文章目录

随机事件与概率一维随机变量及分布分布函数的性质离散型随机变量的分布律与分布函数连续型随机变量的性质常见分布期望方差

宇哥笔记随机事件与概率古典概型定义随机分配(占位)简单随机抽样

几何概型重要公式

一维随机变量及其分布随机变量与分布函数离散型随机变量连续型随机变量X~F(x)八个常见分布

多元随机变量及其分布概念用分布求概率

数字特征概念数学期望与方差协方差与相关系数

例题

大数定律与中心极限定理依概率收敛三个定律与两个定理大数定律中心极限定理

数理统计初步总体与样本点估计

随机事件与概率

1.

A

n

r

=

n

(

n

1

)

(

n

r

+

1

)

n

r

C

n

r

=

n

!

(

n

r

)

!

r

!

=

A

n

r

r

!

n

r

2.

P

(

A

B

)

=

P

(

A

)

+

P

(

B

)

P

(

A

B

)

P

(

A

B

)

=

P

(

A

)

P

(

A

B

)

P

(

A

B

)

+

P

(

A

)

P

(

B

A

)

P

(

A

)

=

i

=

1

n

P

(

B

i

)

P

(

A

B

i

)

P

(

A

j

B

)

=

P

(

A

j

B

)

P

(

B

)

=

P

(

A

j

)

P

(

B

A

j

)

i

=

1

n

P

(

A

i

)

P

(

B

A

i

)

3.

P

(

B

A

)

=

P

(

A

B

)

P

(

A

)

  

  

P

(

A

B

)

=

P

(

A

)

P

(

B

A

)

4.

P

(

A

B

)

=

P

(

A

)

P

(

B

)

5.

P

(

X

=

k

)

=

C

N

K

p

k

(

1

p

)

n

k

\begin{aligned} 1.&\color{red}{排列组合}\\ &排列A_n^r=n(n-1)\cdots(n-r+1)\\ &从n个不同的元素中任取r个,按一定顺序排成一列\\ &组合C_n^r=\frac{n!}{(n-r)!r!}=\frac{A_n^r}{r!}\\ &从n个不同的元素中任取r个,不计顺序排成一组\\ 2.&\color{red}{五大公式}\\ &加法公式:P(A\cup B)=P(A)+P(B)-P(AB)\\ &减法公式:P(A-B)=P(A)-P(AB)\\ &乘法公式:P(AB)+P(A)P(B|A)\\ &全概率公式:P(A)=\sum_{i=1}^nP(B_i)P(A|B_i)\\ &逆概率公式:P(A_j|B)=\frac{P(A_jB)}{P(B)}=\frac{P(A_j)P(B|A_j)}{\sum_{i=1}^nP(A_i)P(B|A_i)}\\ 3.&\color{red}{条件概率}\\ &P(B|A)=\frac{P(AB)}{P(A)}\implies P(AB)=P(A)\cdot P(B|A)\\ 4.&\color{red}{独立}\\ &P(AB)=P(A)P(B)\\ 5.&\color{red}{伯努利试验}\\ &P(X=k)=C_N^Kp^k(1-p)^{n-k}\\ \end{aligned}

1.2.3.4.5.​排列组合排列Anr​=n(n−1)⋯(n−r+1)从n个不同的元素中任取r个,按一定顺序排成一列组合Cnr​=(n−r)!r!n!​=r!Anr​​从n个不同的元素中任取r个,不计顺序排成一组五大公式加法公式:P(A∪B)=P(A)+P(B)−P(AB)减法公式:P(A−B)=P(A)−P(AB)乘法公式:P(AB)+P(A)P(B∣A)全概率公式:P(A)=i=1∑n​P(Bi​)P(A∣Bi​)逆概率公式:P(Aj​∣B)=P(B)P(Aj​B)​=∑i=1n​P(Ai​)P(B∣Ai​)P(Aj​)P(B∣Aj​)​条件概率P(B∣A)=P(A)P(AB)​⟹P(AB)=P(A)⋅P(B∣A)独立P(AB)=P(A)P(B)伯努利试验P(X=k)=CNK​pk(1−p)n−k​

一维随机变量及分布

分布函数的性质

1.

lim

x

F

(

x

)

=

0

,

F

(

)

=

0

,

lim

x

+

F

(

x

)

=

1

,

F

(

+

)

=

1

2.

F

(

x

)

3.

F

(

x

)

F

(

x

+

0

)

=

F

(

x

)

x

D

P

(

x

D

)

=

D

f

(

x

)

d

x

\begin{aligned} &1.\lim_{x\to-\infty}F(x)=0,记为F(-\infty)=0,\lim_{x\to+\infty}F(x)=1,记为F(+\infty)=1\\ &2.F(x)是单调非减函数\\ &3.F(x)是右连续函数,F(x+0)=F(x)\\ &若x\in D为一随机事件,则其概率为P(x\in D)=\int_Df(x)dx\\ \end{aligned}

​1.x→−∞lim​F(x)=0,记为F(−∞)=0,x→+∞lim​F(x)=1,记为F(+∞)=12.F(x)是单调非减函数3.F(x)是右连续函数,F(x+0)=F(x)若x∈D为一随机事件,则其概率为P(x∈D)=∫D​f(x)dx​

离散型随机变量的分布律与分布函数

x

1

2

3

P

0.1

0.5

0.4

F

(

x

)

=

{

0

,

x

<

1

0.1

,

1

x

<

2

0.6

,

2

x

<

3

1

,

3

x

\begin{aligned} & \begin{array}{c|c|c|c} x & 1 & 2 & 3 \\ \hline P & 0.1 & 0.5 & 0.4 \end{array}\\ &F(x)=\begin{cases}0,x<1\\0.1,1\leq x<2\\0.6,2\leq x<3\\1,3\leq x\end{cases} \end{aligned}

​xP​10.1​20.5​30.4​​F(x)=⎩⎪⎪⎪⎨⎪⎪⎪⎧​0,x<10.1,1≤x<20.6,2≤x<31,3≤x​​

连续型随机变量的性质

1.

f

(

x

)

0

2.

+

f

(

x

)

d

x

=

1

3.

x

1

<

x

2

,

P

(

x

1

<

x

x

2

)

=

x

1

x

2

f

(

t

)

d

t

4.

f

(

x

)

F

(

x

)

=

f

(

x

)

{

0

+

x

n

e

x

d

x

=

n

!

+

e

x

2

d

x

=

π

\begin{aligned} &1.f(x)\geq0\\ &2.\int_{-\infty}^{+\infty}f(x)dx=1\\ &3.对于\forall x_1< x_2,P(x_1< x\leq x_2)=\int_{x_1}^{x_2}f(t)dt\\ &4.f(x)在连续点处可导,即F'(x)=f(x)\\ &常考的两个积分\begin{cases}\int_0^{+\infty}x^ne^{-x}dx=n!\\\int_{-\infty}^{+\infty}e^{-x^2}dx=\sqrt\pi\end{cases} \end{aligned}

​1.f(x)≥02.∫−∞+∞​f(x)dx=13.对于∀x1​

​​​

常见分布

0

1

P

(

X

=

k

)

=

C

n

k

p

k

(

1

p

)

n

k

P

(

X

=

k

)

=

λ

k

e

λ

k

!

0

1

X

B

(

1

,

p

)

X

B

(

n

,

p

)

X

P

(

λ

)

p

p

λ

n

k

n

k

E

X

p

n

p

λ

D

X

p

(

1

p

)

n

p

(

1

p

)

λ

f

(

x

)

=

{

1

b

a

,

a

x

b

0

,

f

(

x

)

=

{

λ

e

λ

x

,

x

>

0

0

,

x

0

(

λ

>

0

)

f

(

x

)

=

1

2

π

σ

e

(

x

μ

)

2

2

σ

2

X

U

[

a

,

b

]

X

E

(

λ

)

X

N

(

μ

,

σ

2

)

a

,

b

λ

μ

,

σ

使

寿

E

X

a

+

b

2

1

λ

μ

D

X

(

b

a

)

2

12

1

σ

2

σ

2

P

(

x

>

t

)

=

e

λ

t

(

t

>

0

)

X

N

(

0

,

1

)

φ

(

x

)

=

1

2

π

e

x

2

2

\begin{aligned} &\color{red}{离散型}\\ & \begin{array}{c|c|c|c} 定义 & 0与1 & P(X=k)=C_n^kp^k(1-p)^{n-k} & P(X=k)=\frac{\lambda^ke^{-\lambda}}{k!} \\ \hline 称呼 & 0-1分布 & 二项分布 & 泊松分布 \\\hline 记号 & X\sim B(1,p) & X\sim B(n,p) & X\sim P(\lambda) \\\hline 参数 & p & p & \lambda\\\hline 背景 & 一次伯努利试验成功或失败的次数 & n次伯努利试验成功k次,失败n-k次 & 例如每天收到电话、短信的次数\\\hline EX & p & np & \lambda \\\hline DX & p(1-p) & np(1-p) & \lambda \\ \end{array}\\ &\color{red}{连续型}\\ & \begin{array}{c|c|c|c} 定义 & f(x)=\begin{cases}\frac1{b-a},a\leq x\leq b\\0,其他\end{cases} & f(x)=\begin{cases}\lambda e^{-\lambda x},x>0\\0,x\leq 0\end{cases}(\lambda>0) & f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \\ \hline 称呼 & 均匀分布 & 指数分布 & 正态分布 \\\hline 记号 & X\sim U[a,b] & X\sim E(\lambda) & X\sim N(\mu,\sigma^2) \\\hline 参数 & a,b & \lambda & \mu,\sigma\\\hline 背景 & 等公交、地铁、电梯 & 反映使用寿命、生命特征的现象 & 考试成绩的分布\\\hline EX & \frac{a+b}2 & \frac1\lambda & \mu \\\hline DX & \frac{(b-a)^2}{12} & \frac1{\sigma^2} & \sigma^2 \\\hline 特殊 & & P(x>t)=e^{-\lambda t}(t>0) & X\sim N(0,1)\to\varphi(x)=\frac1{\sqrt{2\pi}}e^{-\frac{x^2}2} \end{array} \end{aligned}

​离散型定义称呼记号参数背景EXDX​0与10−1分布X∼B(1,p)p一次伯努利试验成功或失败的次数pp(1−p)​P(X=k)=Cnk​pk(1−p)n−k二项分布X∼B(n,p)pn次伯努利试验成功k次,失败n−k次npnp(1−p)​P(X=k)=k!λke−λ​泊松分布X∼P(λ)λ例如每天收到电话、短信的次数λλ​​连续型定义称呼记号参数背景EXDX特殊​f(x)={b−a1​,a≤x≤b0,其他​均匀分布X∼U[a,b]a,b等公交、地铁、电梯2a+b​12(b−a)2​​f(x)={λe−λx,x>00,x≤0​(λ>0)指数分布X∼E(λ)λ反映使用寿命、生命特征的现象λ1​σ21​P(x>t)=e−λt(t>0)​f(x)=2π

​σ1​e−2σ2(x−μ)2​正态分布X∼N(μ,σ2)μ,σ考试成绩的分布μσ2X∼N(0,1)→φ(x)=2π

​1​e−2x2​​​​

期望方差

:

E

(

x

)

=

+

x

d

[

F

(

x

)

]

=

{

i

x

i

p

i

,

X

x

f

(

x

)

d

x

,

X

X

g

(

x

)

E

(

g

(

X

)

)

=

{

i

g

(

x

i

)

p

i

,

X

g

(

x

)

f

(

x

)

d

x

,

X

:

E

(

c

)

=

C

E

(

c

X

)

=

C

E

(

X

)

E

(

X

+

Y

)

=

E

(

X

)

+

E

(

Y

)

E

(

X

Y

)

=

E

(

X

)

E

(

Y

)

:

D

(

X

)

=

E

[

X

E

(

X

)

]

2

=

{

i

[

x

i

E

(

X

)

]

2

p

i

,

X

+

[

x

E

(

X

)

]

2

f

(

x

)

d

x

,

X

:

D

(

c

)

=

0

D

(

c

X

)

=

C

2

D

(

X

)

D

(

X

+

Y

)

=

D

(

X

)

+

D

(

Y

)

2

E

{

[

X

E

(

X

)

]

[

Y

E

(

Y

)

]

}

D

(

X

)

=

e

(

X

2

)

[

E

(

X

)

]

2

D

(

X

+

Y

)

=

D

(

X

)

+

D

(

Y

)

(

)

\begin{aligned} 期望:&E(x)=\int_{-\infty}^{+\infty}xd[F(x)]=\begin{cases}\sum_ix_ip_i,X为离散型随机变量\\\int_{-\infty}^{\infty}xf(x)dx,X为连续型随机变量\end{cases}\\ &若随机变量X的概率分布已知,则随机变量函数g(x)的数学期望为E(g(X))=\begin{cases}\sum_ig(x_i)p_i,X为离散型\\\int_{-\infty}^{\infty}g(x)f(x)dx,X为连续型\end{cases}\\ 性质:&E(c)=C\quad E(cX)=CE(X)\quad E(X+Y)=E(X)+E(Y)\quad E(XY)=E(X)E(Y)\\ 方差:&D(X)=E[X-E(X)]^2=\begin{cases}\sum_i[x_i-E(X)]^2p_i,当X为离散型时\\\int_{-\infty}^{+\infty}[x-E(X)]^2f(x)dx,当X为连续型时\end{cases}\\ 性质:&D(c)=0\quad D(cX)=C^2D(X)\\ &D(X+Y)=D(X)+D(Y)-2E\{[X-E(X)][Y-E(Y)]\}\\ &D(X)=e(X^2)-[E(X)]^2\quad D(X+Y)=D(X)+D(Y)(独立) \end{aligned}

期望:性质:方差:性质:​E(x)=∫−∞+∞​xd[F(x)]={∑i​xi​pi​,X为离散型随机变量∫−∞∞​xf(x)dx,X为连续型随机变量​若随机变量X的概率分布已知,则随机变量函数g(x)的数学期望为E(g(X))={∑i​g(xi​)pi​,X为离散型∫−∞∞​g(x)f(x)dx,X为连续型​E(c)=CE(cX)=CE(X)E(X+Y)=E(X)+E(Y)E(XY)=E(X)E(Y)D(X)=E[X−E(X)]2={∑i​[xi​−E(X)]2pi​,当X为离散型时∫−∞+∞​[x−E(X)]2f(x)dx,当X为连续型时​D(c)=0D(cX)=C2D(X)D(X+Y)=D(X)+D(Y)−2E{[X−E(X)][Y−E(Y)]}D(X)=e(X2)−[E(X)]2D(X+Y)=D(X)+D(Y)(独立)​

宇哥笔记

随机事件与概率

古典概型

定义

[

]

Ω

P

(

A

)

=

A

Ω

[

]

1.

(

E

)

2.

Ω

ω

[

]

P

(

)

=

1

2

\begin{aligned} \ [定义]&若\Omega中有有限个、等可能的样本点,称为古典概型\\ &即P(A)=\frac{A中样本点个数}{\Omega中样本点数}\\ [注]&1.试验(E)同条件下可重复;试验结果不止一个;试验前不知哪个结果会出现\\ &2.\Omega——样本空间——所有可能结果;\omega——样本点\\ [例]&P(掷出奇数点)=\frac12\\ \end{aligned}

[定义][注][例]​若Ω中有有限个、等可能的样本点,称为古典概型即P(A)=Ω中样本点数A中样本点个数​1.试验(E)同条件下可重复;试验结果不止一个;试验前不知哪个结果会出现2.Ω——样本空间——所有可能结果;ω——样本点P(掷出奇数点)=21​​

随机分配(占位)

[

]

n

N

(

n

N

)

(

1

)

A

=

{

n

}

(

2

)

B

=

{

n

}

(

1

)

P

(

A

)

=

n

(

n

1

)

(

n

2

)

1

N

n

=

n

!

N

n

(

2

)

P

(

B

)

=

C

N

n

n

!

N

n

[

]

:

12

365

(

1

)

A

=

{

}

  

  

P

(

A

)

=

12

!

36

5

12

(

2

)

B

=

{

}

  

  

P

(

B

)

=

C

365

12

12

!

36

5

12

B

=

{

}

  

  

P

(

B

)

=

1

P

(

B

)

\begin{aligned} \ [例]&\color{maroon}设n个球随机放入N(n\leq N)个盒子中,每个盒子可放任意多个球,求\\ &\color{maroon}(1)A=\{某指定n个盒子各有一球\}\\ &\color{maroon}(2)B=\{恰有n个盒子各有一球\}\\ &(1)P(A)=\frac{n\cdot(n-1)(n-2)\cdots1}{N^n}=\frac{n!}{N^n}\\ &(2)P(B)=\frac{C_N^n\cdot n!}{N^n}\\ [注]&类比:12个人,每个人在365天出生等可能\\ &(1)A=\{生日分别为每个月的第一天\}\implies P(A)=\frac{12!}{365^{12}}\\ &(2)B=\{生日全不相同\}\implies P(B)=\frac{C_{365}^{12}\cdot 12!}{365^{12}}\\ &\quad \overline{B}=\{至少两个人生日相同\}\implies P(\overline{B})=1-P(B)\\ \end{aligned}

[例][注]​设n个球随机放入N(n≤N)个盒子中,每个盒子可放任意多个球,求(1)A={某指定n个盒子各有一球}(2)B={恰有n个盒子各有一球}(1)P(A)=Nnn⋅(n−1)(n−2)⋯1​=Nnn!​(2)P(B)=NnCNn​⋅n!​类比:12个人,每个人在365天出生等可能(1)A={生日分别为每个月的第一天}⟹P(A)=3651212!​(2)B={生日全不相同}⟹P(B)=36512C36512​⋅12!​B={至少两个人生日相同}⟹P(B)=1−P(B)​

简单随机抽样

[

]

5

3

2

(

1

)

2

(

2

)

2

(

3

)

2

2

(

1

)

P

1

=

5

2

2

2

5

2

=

21

25

(

2

)

P

2

=

5

4

2

1

5

4

=

9

10

(

3

)

P

3

=

C

5

2

C

2

2

C

5

2

=

9

10

[

]

k

k

\begin{aligned} \ [例]&\color{maroon}袋中有5个球,3白2黑\\ &\color{maroon}(1)先后有放回取2个球\\ &\color{maroon}(2)先后无放回取2个球\\ &\color{maroon}(3)任取2个球\\ &\color{maroon}求取的2球中至少一个白球的概率\\ &\color{maroon}算‘两球全黑’,用总数减去它\\ &(1)P_1=\frac{5^2-2^2}{5^2}=\frac{21}{25}\\ &(2)P_2=\frac{5\cdot4-2\cdot1}{5\cdot4}=\frac{9}{10}\\ &(3)P_3=\frac{C_5^2-C_2^2}{C_5^2}=\frac{9}{10}\\ [注]&'先后无放回取k个球'与'任取k个球'概率相等,后者好算\\ \end{aligned}

[例][注]​袋中有5个球,3白2黑(1)先后有放回取2个球(2)先后无放回取2个球(3)任取2个球求取的2球中至少一个白球的概率算‘两球全黑’,用总数减去它(1)P1​=5252−22​=2521​(2)P2​=5⋅45⋅4−2⋅1​=109​(3)P3​=C52​C52​−C22​​=109​′先后无放回取k个球′与′任取k个球′概率相等,后者好算​

几何概型

[

]

Ω

Ω

A

A

A

,

P

(

A

)

=

A

Ω

[

]

A

P

(

A

)

=

A

Ω

[

]

x

,

y

1

x

y

1

0.09

.

S

A

=

0.1

0.9

[

1

x

0.09

x

]

d

x

=

0.8

x

2

2

0.1

0.9

0.09

ln

x

0.1

0.9

=

0.8

0.4

0.18

ln

3

0.2

P

(

A

)

=

S

A

S

Ω

=

20

%

\begin{aligned} \ [定义]&若\Omega是一个可度量的几何区域,且样本点落入\Omega中的某一可度量子区域A的可能性大小与A的几何度量成正比,\\ &而与A的位置、形状无关,称为几何概型,即P(A)=\frac{A的度量}{\Omega的度量}\\ [引例]&天上掉馅饼于操场上,拿一个饭盆A去接这个馅饼,P(A)=\frac{A的面积}{\Omega的面积}\\ [例]&\color{maroon}随机取两个正数x,y,这两个数中的每一个都不超过1,求x与y之和不超过1,积不小于0.09的概率.\\ &S_A=\int_{0.1}^{0.9}[1-x-\frac{0.09}{x}]dx=0.8-\frac{x^2}2|_{0.1}^{0.9}-0.09\ln x | _{0.1}^{0.9}=0.8-0.4-0.18\cdot\ln3\approx0.2\\ &P(A)=\frac{S_A}{S_\Omega}=20\% \end{aligned}

[定义][引例][例]​若Ω是一个可度量的几何区域,且样本点落入Ω中的某一可度量子区域A的可能性大小与A的几何度量成正比,而与A的位置、形状无关,称为几何概型,即P(A)=Ω的度量A的度量​天上掉馅饼于操场上,拿一个饭盆A去接这个馅饼,P(A)=Ω的面积A的面积​随机取两个正数x,y,这两个数中的每一个都不超过1,求x与y之和不超过1,积不小于0.09的概率.SA​=∫0.10.9​[1−x−x0.09​]dx=0.8−2x2​∣0.10.9​−0.09lnx∣0.10.9​=0.8−0.4−0.18⋅ln3≈0.2P(A)=SΩ​SA​​=20%​

重要公式

[

]

1.

P

(

A

)

=

1

P

(

A

)

2.

P

(

A

B

)

=

P

(

A

B

)

=

P

(

A

)

P

(

A

B

)

(

A

B

)

3.

(

1

)

P

(

A

+

B

)

=

P

(

A

)

+

P

(

B

)

P

(

A

B

)

(

2

)

P

(

A

+

B

+

C

)

=

P

(

A

)

+

P

(

B

)

+

P

(

C

)

P

(

A

B

)

P

(

B

C

)

P

(

A

C

)

+

P

(

A

B

C

)

[

]

1.

A

1

,

A

2

,

,

A

n

(

n

>

3

)

  

  

P

(

i

=

1

n

A

i

)

=

i

=

1

n

P

(

A

i

)

2.

A

1

,

A

2

,

,

A

n

(

n

>

3

)

,

A

i

1

,

A

i

2

,

,

A

i

k

(

k

2

)

,

P

(

A

i

1

A

i

2

A

i

k

)

=

P

(

A

i

1

)

P

(

A

i

2

)

P

(

A

i

k

)

  

  

A

1

,

A

2

,

,

A

n

n

  

  

A

,

B

  

  

A

,

B

  

  

A

,

B

  

  

A

,

B

n

=

3

,

A

1

,

A

2

,

A

3

,

{

P

(

A

1

A

2

)

=

P

(

A

1

)

P

(

A

2

)

P

(

A

1

A

3

)

=

P

(

A

1

)

P

(

A

3

)

P

(

A

2

A

3

)

=

P

(

A

2

)

P

(

A

3

)

P

(

A

1

A

2

A

3

)

=

P

(

A

1

)

P

(

A

2

)

P

(

A

3

)

A

1

,

A

2

,

,

A

n

P

(

i

=

1

n

A

i

)

=

1

P

(

i

=

1

n

A

i

)

=

1

P

(

i

=

1

n

A

i

)

=

1

i

=

1

n

[

1

P

(

A

i

)

]

A

1

,

A

2

,

,

A

n

4.

P

(

A

B

)

=

P

(

A

B

)

P

(

B

)

,

P

(

B

)

>

0

5.

P

(

A

B

)

=

{

P

(

B

)

P

(

A

B

)

,

P

(

B

)

>

0

P

(

A

)

P

(

B

A

)

,

P

(

A

)

>

0

P

(

A

1

A

2

A

3

)

=

P

(

A

1

)

P

(

A

2

A

1

)

P

(

A

3

A

1

A

2

)

6.

[

]

A

1

,

A

2

,

A

3

,

P

(

B

)

=

P

{

}

{

1.

A

1

,

A

2

,

A

3

2.

,

B

P

(

B

)

=

P

(

B

Ω

)

=

P

(

B

(

A

1

A

2

A

3

)

)

=

P

(

B

A

1

B

A

2

B

A

3

)

=

P

(

B

A

1

)

+

P

(

B

A

2

)

+

P

(

B

A

3

)

=

P

(

A

1

)

P

(

B

A

1

)

+

P

(

A

2

)

P

(

B

A

2

)

+

P

(

A

3

)

P

(

B

A

3

)

P

(

B

)

=

i

=

1

n

P

(

A

i

)

P

(

B

A

i

)

7.

B

P

(

A

j

B

)

=

P

(

A

j

B

)

P

(

B

)

=

P

(

A

j

)

P

(

B

A

j

)

i

=

1

n

P

(

A

i

)

P

(

B

A

i

)

\begin{aligned} \ [公式]1.&对立\ P(A)=1-P(\overline{A})\\ 2.&减法\ P(A\overline{B})=P(A-B)=P(A)-P(AB)(A发生且B不发生)\\ 3.&加法\ (1)P(A+B)=P(A)+P(B)-P(AB)\\ &(2)P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)\\ &[注]\color{grey}1.若A_1,A_2,\cdots,A_n(n>3)两两互斥\implies P(\bigcup_{i=1}^nA_i)=\sum_{i=1}^nP(A_i)\\ &\color{grey}2.设A_1,A_2,\cdots,A_n(n>3),若对其中任意有限个A_{i1},A_{i2},\cdots,A_{ik}(k\geq2),\\ &\color{grey}都有P(A_{i1}A_{i2}\cdots A_{ik})=P(A_{i1})P(A_{i2})\cdots P(A_{ik})\implies A_1,A_2,\cdots,A_n相互独立\\ &\color{grey}且'夫唱妇随',即:n个事件相互独立\iff A,B独立\iff\overline{A},\overline{B}独立\iff\overline{A},B独立\iff A,\overline{B}独立\\ &\color{grey}n=3,A_1,A_2,A_3,有\begin{cases}P(A_1A_2)=P(A_1)P(A_2)\\P(A_1A_3)=P(A_1)P(A_3)\\P(A_2A_3)=P(A_2)P(A_3)\\P(A_1A_2A_3)=P(A_1)P(A_2)P(A_3)\end{cases}相互独立\\ &\color{grey}若上者只成立前三条,则称为两两独立\\ &\color{grey}于是若A_1,A_2,\cdots,A_n相互独立,则P(\bigcup_{i=1}^nA_i)=1-P(\bigcup_{i=1}^nA_i)=1-P(\bigcap_{i=1}^n\overline{A_i})=1-\prod_{i=1}^n[1-P(A_i)]\\ &\color{grey}即\overline{A_1},\overline{A_2},\cdots,\overline{A_n}相互独立\\ 4.&条件概率\ P(A\mid B)=\frac{P(AB)}{P(B)},P(B)>0\\ 5.&乘法\ P(AB)=\begin{cases}P(B)P(A\mid B),P(B)>0\\P(A)P(B\mid A),P(A)>0\end{cases}\\ &P(A_1A_2A_3)=P(A_1)P(A_2\mid A_1)P(A_3\mid A_1A_2)\\ 6.&全集分解公式(全概率公式)\\ &[引例]一个村子有且仅有三个小偷A_1,A_2,A_3,求P(B)=P\{失窃\}\\ &分成两个阶段\begin{cases}1.选人A_1,A_2,A_3\\2.去偷,B\end{cases}\\ &则P(B)=P(B\Omega)=P(B\cap(A_1\cup A_2\cup A_3))\\ &=P(BA_1\cup BA_2\cup BA_3)=P(BA_1)+P(BA_2)+P(BA_3)\\ &=P(A_1)P(B\mid A_1)+P(A_2)P(B\mid A_2)+P(A_3)P(B\mid A_3)\\ &故P(B)=\sum_{i=1}^nP(A_i)P(B\mid A_i)\\ 7.&贝叶斯公式(逆概率公式)\ 若B发生了,执果索因\\ &P(A_j\mid B)=\frac{P(A_jB)}{P(B)}=\frac{P(A_j)P(B\mid A_j)}{\sum_{i=1}^nP(A_i)P(B\mid A_i)} \end{aligned}

[公式]1.2.3.4.5.6.7.​对立 P(A)=1−P(A)减法 P(AB)=P(A−B)=P(A)−P(AB)(A发生且B不发生)加法 (1)P(A+B)=P(A)+P(B)−P(AB)(2)P(A+B+C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC)[注]1.若A1​,A2​,⋯,An​(n>3)两两互斥⟹P(i=1⋃n​Ai​)=i=1∑n​P(Ai​)2.设A1​,A2​,⋯,An​(n>3),若对其中任意有限个Ai1​,Ai2​,⋯,Aik​(k≥2),都有P(Ai1​Ai2​⋯Aik​)=P(Ai1​)P(Ai2​)⋯P(Aik​)⟹A1​,A2​,⋯,An​相互独立且′夫唱妇随′,即:n个事件相互独立⟺A,B独立⟺A,B独立⟺A,B独立⟺A,B独立n=3,A1​,A2​,A3​,有⎩⎪⎪⎪⎨⎪⎪⎪⎧​P(A1​A2​)=P(A1​)P(A2​)P(A1​A3​)=P(A1​)P(A3​)P(A2​A3​)=P(A2​)P(A3​)P(A1​A2​A3​)=P(A1​)P(A2​)P(A3​)​相互独立若上者只成立前三条,则称为两两独立于是若A1​,A2​,⋯,An​相互独立,则P(i=1⋃n​Ai​)=1−P(i=1⋃n​Ai​)=1−P(i=1⋂n​Ai​​)=1−i=1∏n​[1−P(Ai​)]即A1​​,A2​​,⋯,An​​相互独立条件概率 P(A∣B)=P(B)P(AB)​,P(B)>0乘法 P(AB)={P(B)P(A∣B),P(B)>0P(A)P(B∣A),P(A)>0​P(A1​A2​A3​)=P(A1​)P(A2​∣A1​)P(A3​∣A1​A2​)全集分解公式(全概率公式)[引例]一个村子有且仅有三个小偷A1​,A2​,A3​,求P(B)=P{失窃}分成两个阶段{1.选人A1​,A2​,A3​2.去偷,B​则P(B)=P(BΩ)=P(B∩(A1​∪A2​∪A3​))=P(BA1​∪BA2​∪BA3​)=P(BA1​)+P(BA2​)+P(BA3​)=P(A1​)P(B∣A1​)+P(A2​)P(B∣A2​)+P(A3​)P(B∣A3​)故P(B)=i=1∑n​P(Ai​)P(B∣Ai​)贝叶斯公式(逆概率公式) 若B发生了,执果索因P(Aj​∣B)=P(B)P(Aj​B)​=∑i=1n​P(Ai​)P(B∣Ai​)P(Aj​)P(B∣Aj​)​​

[

1

]

D

(

A

)

0

<

P

(

B

)

<

1

,

P

(

A

B

)

+

P

(

A

B

)

=

1

(

B

)

A

,

B

P

(

B

A

)

=

1

,

P

(

A

B

)

=

0

(

C

)

(

A

B

)

B

=

A

B

(

D

)

A

,

B

C

P

(

C

)

<

P

(

A

)

+

P

(

B

)

1

(

A

)

P

(

A

B

)

P

(

B

)

+

P

(

A

B

)

P

(

B

)

=

P

(

A

B

)

P

(

B

)

+

1

P

(

A

+

B

)

1

P

(

B

)

=

P

(

A

B

)

P

(

B

)

+

1

P

(

A

)

P

(

B

)

+

P

(

A

B

)

1

P

(

B

)

=

P

(

A

B

)

P

(

A

B

)

P

(

B

)

+

P

(

B

)

P

(

A

)

P

(

B

)

[

P

(

B

)

]

2

+

P

(

B

)

P

(

A

B

)

P

(

B

)

[

1

P

(

B

)

]

=

1

  

  

P

(

A

B

)

+

P

(

B

)

P

(

A

)

P

(

B

)

[

P

(

B

)

]

2

=

P

(

B

)

[

P

(

B

)

]

2

  

  

P

(

A

B

)

=

P

(

A

)

P

(

B

)

(

B

)

P

(

A

B

)

P

(

A

)

=

1

  

  

P

(

A

B

)

=

P

(

A

)

  

  

P

(

A

B

)

=

P

(

A

)

P

(

A

B

)

=

0

(

C

)

(

A

B

)

B

=

(

A

B

)

B

=

(

A

B

)

(

B

B

)

=

A

B

(

D

)

P

(

A

B

)

P

(

C

)

  

  

P

(

A

)

+

P

(

B

)

P

(

A

+

B

)

P

(

C

)

  

  

P

(

A

)

+

P

(

B

)

P

(

A

+

B

)

P

(

A

)

+

P

(

B

)

1

  

  

P

(

C

)

P

(

A

)

+

P

(

B

)

1

[

2

]

0.6

,

0.5

,

(

1

)

(

2

)

(

1

)

{

1.

A

A

2.

=

B

P

(

A

B

)

=

P

(

A

)

P

(

B

A

)

P

(

A

)

P

(

B

A

)

+

P

(

A

)

P

(

B

A

)

=

1

2

0.6

1

2

0.6

+

1

2

0.5

=

6

11

(

2

)

P

(

A

B

)

=

P

(

A

B

)

P

(

B

)

=

P

(

A

)

P

(

A

)

+

P

(

A

)

P

(

A

A

)

=

0.6

0.6

+

0.5

0.6

0.5

=

3

4

[

3

]

24

0

,

1

,

2

80

%

,

15

%

,

5

%

,

4

,

(

1

)

(

2

)

(

1

)

A

i

=

{

i

}

.

i

=

0

,

1

,

2.

P

(

A

0

)

=

0.8

,

P

(

A

1

)

=

0.15

,

P

(

A

2

)

=

0.05

{

1.

2.

4

B

o

r

B

P

(

B

)

=

P

(

A

0

)

P

(

B

A

0

)

+

P

(

A

1

)

P

(

B

A

1

)

+

P

(

A

2

)

P

(

B

A

2

)

=

0.8

1

+

0.15

C

23

4

C

24

4

+

0.05

C

22

4

C

24

4

0.96

(

2

)

P

(

A

0

B

)

=

0.8

0.96

0.83

\begin{aligned} \ [例1]&\color{maroon}以下结论,错误的是(D)?\\ &\color{maroon}(A)若0< P(B)< 1,P(A\mid B)+P(\overline{A}\mid\overline{B})=1\\ &\color{maroon}(B)若A,B满足P(B\mid A)=1,则P(A-B)=0\\ &\color{maroon}(C)(A-B)\cup B=A\cup B\\ &\color{maroon}(D)若A,B同时发生时,C必发生,则P(C)< P(A)+P(B)-1\\ &(A)\ \frac{P(AB)}{P(B)}+\frac{P(\overline{A}\overline{B})}{P(\overline{B})}=\frac{P(AB)}{P(B)}+\frac{1-P(A+B)}{1-P(B)}=\frac{P(AB)}{P(B)}+\frac{1-P(A)-P(B)+P(AB)}{1-P(B)}\\ &=\frac{P(AB)-P(AB)P(B)+P(B)-P(A)P(B)-[P(B)]^2+P(B)P(AB)}{P(B)[1-P(B)]}=1\\ &\implies P(AB)+P(B)-P(A)P(B)-[P(B)]^2=P(B)-[P(B)]^2\implies P(AB)=P(A)P(B)\\ &(B)\ \frac{P(AB)}{P(A)}=1\implies P(AB)=P(A)\\ &\implies P(A-B)=P(A)-P(AB)=0\\ &(C)\ (A\overline{B})\cup B=(A\cap \overline{B})\cup B=(A\cup B)\cap(\overline{B}\cup B)=A\cup B\\ &(D)\ P(AB)\leq P(C)\implies P(A)+P(B)-P(A+B)\leq P(C)\\ &\implies P(A)+P(B)-P(A+B)\geq P(A)+P(B)-1\implies P(C)\geq P(A)+P(B)-1\\ [例2]&\color{maroon}设有甲、乙两名运动员,甲命中目标的概率为0.6,乙命中目标的概率为0.5,求下列概率。\\ &\color{maroon}(1)从甲、乙中任选一人取射击,若目标被命中,则是甲命中的概率是多少?\\ &\color{maroon}(2)甲、乙各自独立射击,若目标被命中,则是甲命中的概率?\\ &(1)分两个阶段\begin{cases}1.选人,A_甲,A_乙\\2.射击,命中=B\end{cases}\\ &P(A_甲\mid B)=\frac{P(A_甲)P(B\mid A_甲)}{P(A_甲)P(B\mid A_甲)+P(A_乙)P(B\mid A_乙)}\\ &=\frac{\frac12\cdot0.6}{\frac12\cdot0.6+\frac12\cdot0.5}=\frac6{11}\\ &(2)P(A_甲\mid B)=\frac{P(A_甲B)}{P(B)}=\frac{P(A_甲)}{P(A_甲)+P(A_乙)-P(A_甲A_乙)}=\frac{0.6}{0.6+0.5-0.6\cdot0.5}=\frac34\\ [例3]&\color{maroon}每箱有24只产品,每箱含0,1,2件残品的箱各占80\%, 15\%, 5\%,现随机抽一箱,随即检验其中4只,\\ &\color{maroon}若未发现残品则通过验收,否则要逐一检验并更换,求\\ &\color{maroon}(1)一次通过验收的概率\\ &\color{maroon}(2)通过验收的箱中确无残品的概率\\ &(1)记A_i=\{抽取的一箱中含i件残品\}.i=0,1,2.\\ &但P(A_0)=0.8,P(A_1)=0.15,P(A_2)=0.05\\ &分阶段\begin{cases}1.取箱子\\2.取4只检验,收为Bor不收为\overline{B}\end{cases}\\ &P(B)=P(A_0)P(B\mid A_0)+P(A_1)P(B\mid A_1)+P(A_2)P(B\mid A_2)\\ &=0.8\cdot1+0.15\cdot\frac{C_{23}^4}{C_{24}^4}+0.05\cdot\frac{C_{22}^4}{C_{24}^4}\approx0.96\\ &(2)P(A_0\mid B)=\frac{0.8}{0.96}\approx0.83 \end{aligned}

[例1][例2][例3]​以下结论,错误的是(D)?(A)若0

一维随机变量及其分布

随机变量与分布函数

(

1

)

r

,

v

(

)

Ω

=

{

ω

}

X

=

X

(

ω

)

,

ω

Ω

(

2

)

F

(

x

)

=

P

{

X

x

}

,

<

x

<

+

.

\begin{aligned} &(1)r,v(随机变量)\quad 定义在\Omega=\{\omega\}上,取值在实数轴上的变量。即X=X(\omega),\omega\in\Omega\\ &(2)分布函数F(x)=P\{X\leq x\},其中-\infty< x<+\infty. \end{aligned}

​(1)r,v(随机变量)定义在Ω={ω}上,取值在实数轴上的变量。即X=X(ω),ω∈Ω(2)分布函数F(x)=P{X≤x},其中−∞

离散型随机变量

[

]

x

[

]

x

(

x

1

x

2

x

n

P

1

P

2

P

n

)

F

(

x

)

=

P

{

X

x

}

,

r

,

v

  

  

\begin{aligned} \ [定义]&x取有限个或无穷可列个值\\ [分布律]&x\sim\begin{pmatrix}x_1&x_2&\cdots&x_n&\cdots\\P_1&P_2&\cdots&P_n&\cdots\end{pmatrix}\\ &F(x)=P\{X\leq x\},离散型r,v\iff 步步高的阶梯形函数\\ \end{aligned}

[定义][分布律]​x取有限个或无穷可列个值x∼(x1​P1​​x2​P2​​⋯⋯​xn​Pn​​⋯⋯​)F(x)=P{X≤x},离散型r,v⟺步步高的阶梯形函数​

连续型随机变量

[

]

f

(

x

)

,

使

x

(

,

+

)

,

F

(

x

)

=

x

f

(

t

)

d

t

,

x

r

,

v

.

f

(

x

)

[

]

F

(

x

)

=

P

{

X

x

}

=

{

x

f

(

t

)

d

t

,

x

i

x

P

i

,

\begin{aligned} \ [定义]&若存在非负可积函数f(x),使得\forall x\in(-\infty,+\infty),有F(x)=\int_{-\infty}^xf(t)dt,则称x为连续型r,v.f(x)叫概率密度\\ [注]&F(x)=P\{X\leq x\}=\begin{cases}\int_{-\infty}^xf(t)dt,连续型\\\sum_{x_i\leq x}P_i,离散型\end{cases}\\ \end{aligned}

[定义][注]​若存在非负可积函数f(x),使得∀x∈(−∞,+∞),有F(x)=∫−∞x​f(t)dt,则称x为连续型r,v.f(x)叫概率密度F(x)=P{X≤x}={∫−∞x​f(t)dt,连续型∑xi​≤x​Pi​,离散型​​

X~F(x)

X

F

(

x

)

{

P

i

f

(

x

)

(

1

)

F

(

x

)

X

  

  

{

1.

2.

F

(

)

=

0

,

F

(

+

)

=

1

3.

(

)

(

2

)

{

P

i

}

  

  

{

1.

P

i

0

2.

i

P

i

=

1

(

3

)

f

(

x

)

  

  

{

1.

f

(

x

)

0

2.

+

f

(

x

)

d

x

=

1

\begin{aligned} &X\sim F(x)\begin{cases}P_i\to分布律\\f(x)\to概率密度\end{cases}\\ &(1)F(x)是某个X的分布函数\iff\begin{cases}1.单调不减\\2.F(-\infty)=0,F(+\infty)=1\\3.右连续(等号跟着大于号)\end{cases}\\ &(2)\{P_i\}是分布律\iff\begin{cases}1.P_i\geq0\\2.\sum_iP_i=1\end{cases}\\ &(3)f(x)是概率密度\iff\begin{cases}1.f(x)\geq0\\2.\int_{-\infty}^{+\infty}f(x)dx=1\end{cases}\\ \end{aligned}

​X∼F(x){Pi​→分布律f(x)→概率密度​(1)F(x)是某个X的分布函数⟺⎩⎪⎨⎪⎧​1.单调不减2.F(−∞)=0,F(+∞)=13.右连续(等号跟着大于号)​(2){Pi​}是分布律⟺{1.Pi​≥02.∑i​Pi​=1​(3)f(x)是概率密度⟺{1.f(x)≥02.∫−∞+∞​f(x)dx=1​​

八个常见分布

(

1

)

(

5

)

(

6

)

(

8

)

(

1

)

0

1

X

(

1

0

P

1

P

)

(

2

)

{

1.

2.

P

(

A

)

=

P

3.

A

,

A

,

X

A

,

P

{

x

=

k

}

=

C

n

k

P

k

(

1

P

)

n

k

,

k

=

0

,

1

,

,

n

  

  

X

B

(

n

,

P

)

(

3

)

X

  

  

P

{

x

=

k

}

=

P

1

(

1

P

)

k

1

,

k

=

1

,

2

,

(

4

)

N

M

N

M

n

P

{

x

=

k

}

=

C

M

k

C

N

M

n

k

C

N

n

(

5

)

,

P

P

{

X

=

k

}

=

λ

k

k

!

e

λ

,

{

λ

k

=

0

,

1

,

(

6

)

X

f

(

x

)

=

{

1

b

a

,

a

x

b

0

,

,

X

U

[

a

,

b

]

[

]

X

I

X

U

(

I

)

(

7

)

X

f

(

x

)

=

{

λ

e

λ

x

,

x

>

0

0

,

x

0

,

X

E

(

λ

)

,

λ

[

]

P

{

X

t

+

s

X

t

}

=

P

{

x

s

}

F

(

x

)

=

P

{

X

x

}

=

x

f

(

t

)

d

t

=

{

1

e

λ

x

,

x

0

0

,

x

<

0

{

(

8

)

X

f

(

x

)

=

1

2

π

σ

e

(

x

μ

)

2

2

σ

2

,

<

x

<

+

[

]

μ

=

0

,

σ

2

=

1

  

  

X

N

(

0

,

1

)

X

φ

(

x

)

=

1

2

π

e

x

2

2

X

Φ

(

x

)

=

x

1

2

π

e

t

2

2

d

t

\begin{aligned} &(1)-(5)离散型\quad(6)-(8)连续型\\ (1)&0-1分布\quad X\sim\begin{pmatrix}1&0\\P&1-P\end{pmatrix}\\ (2)&二项分布\quad \begin{cases}1.独立\\2.P(A)=P\\3.只有A,\overline{A},非白即黑\end{cases}\\ &记X为A发生的次数,P\{x=k\}=C_n^kP^k(1-P)^{n-k},k=0,1,\cdots,n\\ &\implies X\sim B(n,P)\\ (3)&几何分布\quad 与几何无关,首中即停止,记X为试验次数\implies P\{x=k\}=P^1(1-P)^{k-1},k=1,2,\cdots\\ (4)&超几何分布\quad 古典概型,设N件产品,M、件正品,N-M件次品,无放回取n次,则P\{x=k\}=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n}\\ (5)&泊松分布\quad某时间段内,某场合下,源源不断的质点来流的个数,也常用于描述稀有事件的P\\ &P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},\begin{cases}\lambda--强度\\k=0,1,\cdots\end{cases}\\ (6)&均匀分布\quad 对比几何概型,若X\sim f(x)=\begin{cases}\frac1{b-a},a\leq x\leq b\\0,其他\end{cases},称X\sim U[a,b]\\ &[注]高档次说法:“X在I上的任意子区间取值的概率与该子区间长度成正比”\to X\sim U(I)\\ (7)&指数分布\quad X\sim f(x)=\begin{cases}\lambda e^{-\lambda x},x>0\\0,x\leq0\end{cases},称X\sim E(\lambda),\lambda--失效率\\ &[注]无记忆性\ P\{X\geq t+s\mid X\geq t\}=P\{x\geq s\}\\ &F(x)=P\{X\leq x\}=\int_{-\infty}^xf(t)dt=\begin{cases}1-e^{-\lambda x},x\geq0\\0,x< 0\end{cases}\\ &\begin{cases}几何分布,离散性等待分布\\指数分布,连续性等待分布\end{cases}\\ (8)&正态分布\quad X\sim f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},-\infty< x< +\infty\\ &[注]若\mu=0,\sigma^2=1\implies X\sim N(0,1)\\ &X\sim\varphi(x)=\frac1{\sqrt{2\pi}}e^{-\frac{x^2}2}\\ &X\sim\Phi(x)=\int_{-\infty}^x\frac1{\sqrt{2\pi}}e^{-\frac{t^2}2}dt\\ \end{aligned}

(1)(2)(3)(4)(5)(6)(7)(8)​(1)−(5)离散型(6)−(8)连续型0−1分布X∼(1P​01−P​)二项分布⎩⎪⎨⎪⎧​1.独立2.P(A)=P3.只有A,A,非白即黑​记X为A发生的次数,P{x=k}=Cnk​Pk(1−P)n−k,k=0,1,⋯,n⟹X∼B(n,P)几何分布与几何无关,首中即停止,记X为试验次数⟹P{x=k}=P1(1−P)k−1,k=1,2,⋯超几何分布古典概型,设N件产品,M、件正品,N−M件次品,无放回取n次,则P{x=k}=CNn​CMk​CN−Mn−k​​泊松分布某时间段内,某场合下,源源不断的质点来流的个数,也常用于描述稀有事件的PP{X=k}=k!λk​e−λ,{λ−−强度k=0,1,⋯​均匀分布对比几何概型,若X∼f(x)={b−a1​,a≤x≤b0,其他​,称X∼U[a,b][注]高档次说法:“X在I上的任意子区间取值的概率与该子区间长度成正比”→X∼U(I)指数分布X∼f(x)={λe−λx,x>00,x≤0​,称X∼E(λ),λ−−失效率[注]无记忆性 P{X≥t+s∣X≥t}=P{x≥s}F(x)=P{X≤x}=∫−∞x​f(t)dt={1−e−λx,x≥00,x<0​{几何分布,离散性等待分布指数分布,连续性等待分布​正态分布X∼f(x)=2π

​σ1​e−2σ2(x−μ)2​,−∞

​1​e−2x2​X∼Φ(x)=∫−∞x​2π

​1​e−2t2​dt​

[

1

]

X

F

(

x

)

,

f

(

x

)

=

a

f

1

(

x

)

+

b

f

2

(

x

)

,

f

1

(

x

)

N

(

0

,

σ

2

)

,

f

2

(

x

)

E

(

λ

)

F

(

0

)

=

1

8

,

a

=

,

b

=

1.

+

f

(

x

)

d

x

=

a

+

f

1

(

x

)

d

x

+

b

+

f

2

(

x

)

d

x

  

  

1

=

a

+

b

2.

F

(

0

)

=

0

f

(

x

)

d

x

=

a

0

f

1

(

x

)

d

x

+

b

0

f

2

(

x

)

d

x

=

1

8

a

1

2

+

b

0

=

1

8

  

  

a

=

1

4

  

  

b

=

3

4

[

2

]

X

f

(

x

)

=

{

A

e

x

,

x

>

λ

0

,

,

λ

>

0

,

P

{

λ

<

X

<

λ

+

a

}

(

a

>

0

)

+

f

(

x

)

d

x

=

1

  

  

λ

+

A

e

x

d

x

=

1

  

  

A

e

x

+

λ

=

A

e

λ

=

1

  

  

A

=

e

λ

  

  

P

{

λ

<

X

<

λ

+

a

}

=

λ

λ

+

a

e

λ

e

x

d

x

=

e

λ

[

e

x

]

λ

+

a

λ

=

e

λ

(

e

λ

e

(

λ

+

a

)

)

=

1

e

a

λ

a

[

3

]

X

E

(

λ

)

,

X

2

7

8

,

λ

=

Y

=

{

X

2

}

  

  

Y

B

(

3

,

P

)

P

=

{

X

>

2

}

=

2

+

f

(

x

)

d

x

=

1

P

{

X

2

}

=

1

F

(

2

)

=

1

[

1

e

2

λ

]

=

e

2

λ

P

{

Y

1

}

=

7

8

=

1

P

{

Y

=

0

}

=

1

(

1

P

)

3

=

1

(

1

e

2

λ

)

3

  

  

e

2

λ

=

1

2

  

  

λ

=

1

2

ln

1

2

=

1

2

ln

2

[

4

]

X

E

(

λ

)

Y

=

1

e

λ

x

f

Y

(

y

)

X

f

X

(

x

)

,

Y

=

g

(

X

)

,

f

Y

(

y

)

1.

F

Y

(

y

)

=

P

{

Y

y

}

=

P

{

g

(

X

)

y

}

=

P

{

X

I

y

}

=

I

y

f

x

(

x

)

d

x

2.

f

Y

(

y

)

=

F

Y

(

y

)

1.

F

Y

(

y

)

=

P

{

Y

y

}

=

P

{

1

e

λ

x

y

}

(

1

)

y

<

0

  

  

F

Y

(

y

)

=

0

(

2

)

y

1

  

  

F

Y

(

y

)

=

1

(

3

)

0

y

1

  

  

F

Y

(

y

)

=

P

{

0

X

1

λ

ln

(

1

y

)

}

=

F

X

(

1

λ

ln

(

1

y

)

)

=

1

e

λ

[

1

λ

ln

(

1

y

)

]

2.

f

Y

(

y

)

=

{

1

,

0

y

<

1

0

,

\begin{aligned} \ [例1]&\color{maroon}设X\sim F(x),f(x)=af_1(x)+bf_2(x),f_1(x)\sim N(0,\sigma^2),f_2(x)\sim E(\lambda)\\ &\color{maroon}F(0)=\frac18,则a=\underline{\quad},b=\underline{\quad}\\ &1.\int_{-\infty}^{+\infty}f(x)dx=a\int_{-\infty}^{+\infty}f_1(x)dx+b\int_{-\infty}^{+\infty}f_2(x)dx\implies 1=a+b\\ &2.F(0)=\int_{-\infty}^0f(x)dx=a\int_{-\infty}^{0}f_1(x)dx+b\int_{-\infty}^{0}f_2(x)dx=\frac18\\ &即a\cdot\frac12+b\cdot0=\frac18\implies a=\frac14\implies b=\frac34\\ [例2]&\color{maroon}X\sim f(x)=\begin{cases}Ae^{-x},x>\lambda\\0,其他\end{cases},\lambda>0,P\{\lambda< X< \lambda+a\}(a>0)的值\\ &\int_{-\infty}^{+\infty}f(x)dx=1\implies \int_{\lambda}^{+\infty}Ae^{-x}dx=1\implies A\cdot e^{-x}\mid^\lambda_{+\infty}=Ae^{-\lambda}=1\implies A=e^{\lambda}\\ &\implies P\{\lambda< X< \lambda+a\}=\int_{\lambda}^{\lambda+a}e^{\lambda}\cdot e^{-x}dx=e^{\lambda}[e^{-x}]\mid^{\lambda}_{\lambda+a}=e^{\lambda}\cdot(e^{-\lambda}-e^{-(\lambda+a)})=1-e^{-a}\\ &故其值与\lambda无关,随着a的增大其概率增大\\ [例3]&\color{maroon}X\sim E(\lambda),对X作三次独立重复观察,至少有一次观测值大于2的概率为\frac78,则\lambda=\underline{\quad}\\ &记Y=\{对X作三次独立重复观察中观测值大于2发生的次数\}\implies Y\sim B(3,P)\\ &其中P=\{X>2\}=\int_2^{+\infty}f(x)dx=1-P\{X\leq2\}=1-F(2)=1-[1-e^{-2\lambda}]=e^{-2\lambda}\\ &由题意,得P\{Y\geq1\}=\frac78=1-P\{Y=0\}=1-(1-P)^3=1-(1-e^{-2\lambda})^3\\ &\implies e^{-2\lambda}=\frac12\implies \lambda=-\frac12\ln\frac12=\frac12\ln2\\ [例4]&\color{maroon}X\sim E(\lambda)求Y=1-e^{-\lambda x}\sim f_Y(y)\\ &X\sim f_X(x),Y=g(X),求f_Y(y)\\ &1.F_Y(y)=P\{Y\leq y\}=P\{g(X)\leq y\}=P\{X\in I_y\}=\int_{I_y}f_x(x)dx\\ &2.f_Y(y)=F_Y'(y)\\ &1.F_Y(y)=P\{Y\leq y\}=P\{1-e^{-\lambda x}\leq y\}\\ &(1)y< 0\implies F_Y(y)=0\\ &(2)y\geq1\implies F_Y(y)=1\\ &(3)0\leq y\leq1\implies F_Y(y)=P\{0\leq X\leq -\frac1{\lambda}\ln(1-y)\}=F_X(-\frac1{\lambda}\ln(1-y))=1-e^{-\lambda[-\frac1{\lambda}\ln(1-y)]}\\ &2.f_Y(y)=\begin{cases}1,0\leq y< 1\\0,其他\end{cases}\\ \end{aligned}

[例1][例2][例3][例4]​设X∼F(x),f(x)=af1​(x)+bf2​(x),f1​(x)∼N(0,σ2),f2​(x)∼E(λ)F(0)=81​,则a=​,b=​1.∫−∞+∞​f(x)dx=a∫−∞+∞​f1​(x)dx+b∫−∞+∞​f2​(x)dx⟹1=a+b2.F(0)=∫−∞0​f(x)dx=a∫−∞0​f1​(x)dx+b∫−∞0​f2​(x)dx=81​即a⋅21​+b⋅0=81​⟹a=41​⟹b=43​X∼f(x)={Ae−x,x>λ0,其他​,λ>0,P{λ0)的值∫−∞+∞​f(x)dx=1⟹∫λ+∞​Ae−xdx=1⟹A⋅e−x∣+∞λ​=Ae−λ=1⟹A=eλ⟹P{λ2}=∫2+∞​f(x)dx=1−P{X≤2}=1−F(2)=1−[1−e−2λ]=e−2λ由题意,得P{Y≥1}=87​=1−P{Y=0}=1−(1−P)3=1−(1−e−2λ)3⟹e−2λ=21​⟹λ=−21​ln21​=21​ln2X∼E(λ)求Y=1−e−λx∼fY​(y)X∼fX​(x),Y=g(X),求fY​(y)1.FY​(y)=P{Y≤y}=P{g(X)≤y}=P{X∈Iy​}=∫Iy​​fx​(x)dx2.fY​(y)=FY′​(y)1.FY​(y)=P{Y≤y}=P{1−e−λx≤y}(1)y<0⟹FY​(y)=0(2)y≥1⟹FY​(y)=1(3)0≤y≤1⟹FY​(y)=P{0≤X≤−λ1​ln(1−y)}=FX​(−λ1​ln(1−y))=1−e−λ[−λ1​ln(1−y)]2.fY​(y)={1,0≤y<10,其他​​

多元随机变量及其分布

概念

1.

(

X

,

Y

)

,

F

(

x

,

y

)

=

P

{

X

x

,

Y

y

}

,

<

x

<

+

,

<

y

<

+

2.

F

X

(

x

)

=

lim

y

+

F

(

x

,

y

)

,

F

Y

(

y

)

=

lim

x

+

F

(

x

,

y

)

[

]

1.

(

X

,

Y

)

P

i

j

(

)

P

(

X

=

x

i

Y

=

y

i

)

=

P

(

X

=

x

i

,

Y

=

y

j

)

P

(

Y

=

y

j

)

=

P

i

j

P

j

P

(

X

=

1

Y

=

0

)

=

P

21

P

1

=

2.

(

X

,

Y

)

f

(

x

,

y

)

(

)

f

X

(

x

)

=

+

f

(

x

,

y

)

d

y

,

f

Y

(

y

)

=

+

f

(

x

,

y

)

d

x

f

X

Y

(

x

y

)

=

f

(

x

,

y

)

f

Y

(

y

)

=

3.

(

X

,

Y

)

,

X

,

Y

  

  

F

(

x

,

y

)

=

F

X

(

x

)

F

Y

(

y

)

  

  

P

i

j

=

P

i

P

j

,

i

,

j

  

  

f

(

x

,

y

)

=

f

X

(

x

)

f

Y

(

y

)

4.

(

1

)

(

X

,

Y

)

f

(

x

,

y

)

=

{

1

S

D

,

(

x

,

y

)

D

0

,

(

x

,

y

)

D

(

2

)

(

X

,

Y

)

N

(

μ

1

,

μ

2

,

σ

1

2

,

σ

2

2

,

ρ

)

E

X

=

μ

1

,

E

Y

=

μ

2

,

D

X

=

σ

1

2

,

D

Y

=

σ

2

2

,

ϱ

x

y

=

ρ

\begin{aligned} 1.&联合分布\quad 设(X,Y),F(x,y)=P\{X\leq x,Y\leq y\},-\infty< x<+\infty,-\infty< y<+\infty\\ 2.&边缘分布\quad F_X(x)=\lim_{y\to+\infty}F(x,y),F_Y(y)=\lim_{x\to+\infty}F(x,y)\\ [注]&1.离散型(X,Y)\sim P_{ij}(联合分布律)\\ &条件分布为P(X=x_i\mid Y=y_i)=\frac{P(X=x_i,Y=y_j)}{P(Y=y_j)}=\frac{P_{ij}}{P_{\cdot j}}\\ &P(X=1\mid Y=0)=\frac{P_{21}}{P_{\cdot 1}}\\ &条件=\frac{联合}{边缘}\\ &2.连续型(X,Y)\sim f(x,y)(联合概率密度)\\ &边缘密度为f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy,f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx\\ &条件密度为f_{X\mid Y}(x\mid y)=\frac{f(x,y)}{f_Y(y)}\\ &无论离散还是连续,条件=\frac{联合}{边缘}\\ 3.&独立性\quad 设(X,Y),X,Y独立\iff F(x,y)=F_X(x)\cdot F_Y(y)\\ &\iff P_{ij}=P_{i\cdot}\cdot P_{\cdot j},\forall i,j\\ &\iff f(x,y)=f_X(x)\cdot f_Y(y)\\ 4.&两个分布\\ &(1)均匀分布\quad (X,Y)\sim f(x,y)=\begin{cases}\frac1{S_D},(x,y)\in D\\0,(x,y)\notin D\end{cases}\\ &(2)正态分布\quad (X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)\\ &其中EX=\mu_1,EY=\mu_2,DX=\sigma_1^2,DY=\sigma_2^2,\varrho_{xy}=\rho\\ \end{aligned}

1.2.[注]3.4.​联合分布设(X,Y),F(x,y)=P{X≤x,Y≤y},−∞

用分布求概率

[

1

]

(

X

,

Y

)

X

Y

0

1

0

a

0.4

1

0.1

b

{

x

=

0

}

{

X

+

Y

=

1

}

U

=

m

a

x

{

X

,

Y

}

,

V

=

m

i

n

{

X

,

Y

}

,

P

=

{

U

+

V

=

1

}

=

U

=

m

a

x

{

X

,

Y

}

=

(

X

+

Y

)

+

X

Y

2

V

=

m

i

n

{

X

,

Y

}

=

(

X

+

Y

)

X

Y

2

U

+

V

=

X

+

Y

  

  

P

(

U

+

V

=

1

)

=

P

{

X

+

Y

=

1

}

=

0.5

[

2

]

(

X

,

Y

)

D

=

{

(

x

,

y

)

1

x

e

2

,

0

y

1

x

}

(

X

,

Y

)

x

f

X

(

x

)

x

=

e

S

D

=

1

e

2

1

x

d

x

=

ln

x

1

e

2

=

2

0

=

2

  

  

(

X

,

Y

)

f

(

x

,

y

)

=

{

1

2

,

(

x

,

y

)

D

0

,

(

x

,

y

)

D

线

f

X

(

x

)

=

{

0

1

x

1

2

d

y

,

1

x

e

2

0

,

=

{

1

2

x

,

1

x

e

2

0

,

  

  

f

X

(

e

)

=

1

2

e

[

3

]

(

X

,

Y

)

f

(

x

,

y

)

=

{

x

,

0

<

x

<

1

,

0

<

y

<

x

0

,

Z

=

X

Y

f

Z

(

z

)

(

X

,

Y

)

f

(

x

,

y

)

,

Z

=

g

(

x

,

y

)

  

  

f

Z

(

z

)

1.

F

Z

(

z

)

=

P

{

Z

z

}

=

P

{

g

(

X

,

Y

)

z

}

=

g

(

x

,

y

)

z

f

(

x

,

y

)

d

σ

2.

f

Z

(

z

)

=

F

Z

(

z

)

1.

F

Z

(

z

)

=

P

{

Z

z

}

=

P

{

X

Y

z

}

(

1

)

z

<

0

  

  

F

Z

(

z

)

=

0

(

2

)

z

1

  

  

F

Z

(

z

)

=

1

(

3

)

0

z

<

1

  

  

F

Z

(

z

)

=

D

f

(

x

,

y

)

d

σ

=

0

z

d

x

0

x

3

x

d

y

+

z

1

d

x

x

z

x

3

x

d

y

=

3

2

z

1

2

z

3

  

  

f

Z

(

z

)

=

{

3

2

3

2

z

2

,

0

z

<

1

0

,

[

4

]

X

,

Y

P

{

X

=

0

}

=

P

{

X

=

1

}

=

1

2

,

P

{

Y

x

}

=

x

,

0

<

y

1

,

Z

=

X

Y

X

P

i

,

Y

f

Y

(

y

)

=

{

1

,

0

<

y

<

1

0

,

(

1

)

X

;

(

2

)

X

Y

F

Z

(

z

)

=

P

{

Z

z

}

=

P

{

X

Y

z

}

=

P

(

X

=

0

)

P

(

X

Y

z

X

=

0

)

+

P

(

X

=

1

)

P

(

X

Y

z

X

=

1

)

1

2

[

P

(

0

z

)

+

P

(

Y

z

)

]

=

1

2

F

Z

(

z

)

=

{

z

<

0

  

  

F

Z

(

z

)

=

0

z

1

  

  

F

Z

(

z

)

=

1

0

z

<

1

  

  

F

Z

(

z

)

=

1

2

(

1

+

z

)

\begin{aligned} \ [例1]&\color{maroon}(X,Y)\sim \begin{array}{c|cc} X\ Y & 0 & 1 \\ \hline 0 & a & 0.4 \\ 1 & 0.1 & b \\ \end{array}\\ &\color{maroon}若\{x=0\}与\{X+Y=1\}独立,令U=max\{X,Y\},V=min\{X,Y\},则P=\{U+V=1\}=\underline{\quad}\\ &U=max\{X,Y\}=\frac{(X+Y)+\mid X-Y\mid}{2}\\ &V=min\{X,Y\}=\frac{(X+Y)-\mid X-Y\mid}2\\ &U+V=X+Y\implies P(U+V=1)=P\{X+Y=1\}=0.5\\ [例2]&\color{maroon}设(X,Y)在D=\{(x,y)\mid 1\leq x\leq e^2,0\leq y\leq \frac1x\}上服从均匀分布\\ &\color{maroon}则(X,Y)关于x\sim f_X(x)在x=e处得值为\underline{\quad}\\ &S_D=\int_1^{e^2}\frac1xdx=\ln x\mid^{e^2}_1=2-0=2\\ &\implies (X,Y)\sim f(x,y)=\begin{cases}\frac12,(x,y)\in D\\0,(x,y)\notin D\end{cases}\\ &求谁不积谁,不积先定限,限内画条线,先交写下限,后交写上限\\ &f_X(x)=\begin{cases}\int_0^{\frac1x}\frac12dy,1\leq x\leq e^2\\0,其他\end{cases}=\begin{cases}\frac{1}{2x},1\leq x\leq e^2\\0,其他\end{cases}\\ &\implies f_X(e)=\frac1{2e}\\ [例3]&\color{maroon}(X,Y)\sim f(x,y)=\begin{cases}x,0< x< 1,0< y< x\\0,其他\end{cases},求Z=X-Y的f_{Z}(z)\\ &(X,Y)\sim f(x,y),Z=g(x,y)\implies f_Z(z)\\ &1.F_Z(z)=P\{Z\leq z\}=P\{g(X,Y)\leq z\}=\iint_{g(x,y)\leq z}f(x,y)d\sigma\\ &2.f_Z(z)=F_Z'(z)\\ &1.F_Z(z)=P\{Z\leq z\}=P\{X-Y\leq z\}\\ &(1)z<0 \implies F_Z(z)=0\\ &(2)z\geq1\implies F_Z(z)=1\\ &(3)0\leq z<1\implies F_Z(z)=\iint_Df(x,y)d\sigma=\int_0^zdx\int_0^x3xdy+\int_z^1dx\int_{x-z}^x3xdy=\frac32z-\frac12z^3\\ &\implies f_Z(z)=\begin{cases}\frac32-\frac32z^2,0\leq z<1\\0,其他\end{cases}\\ [例4]&\color{maroon}X,Y相互独立,P\{X=0\}=P\{X=1\}=\frac12,P\{Y\leq x\}=x,0< y\leq1,求Z=XY的分布函数\\ &X\sim P_i,Y\sim f_Y(y)=\begin{cases}1,0< y <1\\0,其他\end{cases}\\ &(1)选X;(2)作XY\\ &F_Z(z)=P\{Z\leq z\}=P\{XY\leq z\}=P(X=0)P(XY\leq z\mid X=0)+P(X=1)P(XY\leq z\mid X=1)\\ &\frac12[P(0\leq z)+P(Y\leq z)]=\frac12\\ &F_Z(z)=\begin{cases}z<0 \implies F_Z(z)=0\\z\geq1\implies F_Z(z)=1\\0\leq z<1\implies F_Z(z)=\frac12(1+z)\end{cases}\\ \end{aligned}

[例1][例2][例3][例4]​(X,Y)∼X Y01​0a0.1​10.4b​​若{x=0}与{X+Y=1}独立,令U=max{X,Y},V=min{X,Y},则P={U+V=1}=​U=max{X,Y}=2(X+Y)+∣X−Y∣​V=min{X,Y}=2(X+Y)−∣X−Y∣​U+V=X+Y⟹P(U+V=1)=P{X+Y=1}=0.5设(X,Y)在D={(x,y)∣1≤x≤e2,0≤y≤x1​}上服从均匀分布则(X,Y)关于x∼fX​(x)在x=e处得值为​SD​=∫1e2​x1​dx=lnx∣1e2​=2−0=2⟹(X,Y)∼f(x,y)={21​,(x,y)∈D0,(x,y)∈/​D​求谁不积谁,不积先定限,限内画条线,先交写下限,后交写上限fX​(x)={∫0x1​​21​dy,1≤x≤e20,其他​={2x1​,1≤x≤e20,其他​⟹fX​(e)=2e1​(X,Y)∼f(x,y)={x,0

数字特征

概念

数学期望与方差

1.

(

1

)

E

X

{

X

P

i

  

  

E

X

=

i

x

i

P

i

X

f

(

x

)

  

  

E

X

=

+

f

(

x

)

d

x

(

2

)

X

p

i

,

Y

=

g

(

X

)

  

  

E

Y

=

i

g

(

x

i

)

p

i

(

3

)

X

f

(

x

)

,

Y

=

g

(

X

)

  

  

E

Y

=

+

g

(

x

)

f

(

x

)

d

x

(

4

)

(

X

,

Y

)

p

i

j

,

Z

=

g

(

X

,

Y

)

  

  

E

Z

=

i

j

g

(

x

i

,

y

i

)

p

i

j

(

5

)

(

X

,

Y

)

f

(

x

,

y

)

,

Z

=

g

(

X

,

Y

)

  

  

E

Z

=

+

+

g

(

x

,

y

)

f

(

x

,

y

)

d

x

d

y

2.

D

X

=

E

[

(

X

E

X

)

2

]

(

1

)

{

X

p

i

  

  

D

X

=

E

[

(

X

E

X

)

2

]

=

i

(

x

i

E

X

)

2

p

i

X

f

(

x

)

  

  

D

X

=

E

[

(

X

E

X

)

2

]

=

+

(

x

E

X

)

2

f

(

x

)

d

x

(

2

)

:

D

X

=

E

[

(

X

E

X

)

2

]

=

E

[

X

2

2

X

E

X

+

(

E

X

)

2

]

=

E

(

X

2

)

2

E

X

E

X

+

(

E

X

)

2

]

D

X

=

E

(

X

2

)

(

E

X

)

2

3.

(

1

)

E

a

=

a

,

E

(

E

X

)

=

E

X

(

2

)

E

(

a

X

+

b

Y

)

=

a

E

X

+

b

E

Y

,

E

(

i

=

1

n

a

i

X

i

)

=

i

=

1

n

a

i

E

X

i

(

)

(

3

)

X

,

Y

E

(

X

Y

)

=

E

X

E

Y

(

4

)

D

a

=

0

,

D

(

E

X

)

=

0

,

D

(

D

X

)

=

0

(

5

)

X

,

Y

D

(

X

±

Y

)

=

D

X

+

D

Y

(

6

)

D

(

a

X

+

b

)

=

a

2

D

X

,

E

(

a

X

+

b

)

=

a

E

X

+

b

(

7

)

,

D

(

X

±

Y

)

=

D

X

+

D

Y

±

2

C

o

v

(

X

,

Y

)

D

(

i

=

1

n

X

i

)

=

i

=

1

n

D

X

i

+

2

1

i

<

j

n

C

o

v

(

x

i

,

x

j

)

[

]

1.0

1

E

X

=

p

,

D

X

=

p

p

2

=

(

1

p

)

p

,

X

(

1

0

p

1

p

)

2.

X

B

(

n

,

p

)

,

E

X

=

n

p

,

D

X

=

n

p

(

1

p

)

3.

X

P

(

λ

)

,

E

X

=

λ

,

D

X

=

λ

4.

X

G

e

(

p

)

,

E

X

=

1

p

,

D

X

=

1

p

p

2

5.

X

U

[

a

,

b

]

,

E

X

=

a

+

b

2

,

D

X

=

(

b

a

)

2

12

6.

X

E

X

(

λ

)

,

E

X

=

1

λ

,

D

X

=

1

λ

2

7.

X

N

(

μ

,

σ

2

)

,

E

X

=

μ

,

D

X

=

σ

2

8.

X

χ

2

(

n

)

,

E

X

=

n

,

D

X

=

2

n

\begin{aligned} 1.&期望定义\\ (1)&EX\begin{cases}X\sim P_i\implies EX=\sum_ix_iP_i\\X\sim f(x)\implies EX=\int_{-\infty}^{+\infty}f(x)dx\end{cases}\\ (2)&X\sim p_i,Y=g(X)\implies EY=\sum_ig(x_i)p_i\\ (3)&X\sim f(x),Y=g(X)\implies EY=\int_{-\infty}^{+\infty}g(x)f(x)dx\\ (4)&(X,Y)\sim p_{ij},Z=g(X,Y)\implies EZ=\sum_i\sum_jg(x_i,y_i)p_{ij}\\ (5)&(X,Y)\sim f(x,y),Z=g(X,Y)\implies EZ=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy\\ 2.&方差定义\\ &DX=E[(X-EX)^2]\\ (1)&定义法:\begin{cases}X\sim p_i\implies DX=E[(X-EX)^2]=\sum_i(x_i-EX)^2p_i\\X\sim f(x)\implies DX=E[(X-EX)^2]=\int_{-\infty}^{+\infty}(x-EX)^2f(x)dx\end{cases}\\ (2)&公式法:DX=E[(X-EX)^2]=E[X^2-2\cdot X\cdot EX+(EX)^2]=E(X^2)-2\cdot EX\cdot EX+(EX)^2]\\ &DX=E(X^2)-(EX)^2\\ 3.&性质\\ (1)&Ea=a,E(EX)=EX\\ (2)&E(aX+bY)=aEX+bEY,E(\sum_{i=1}^na_iX_i)=\sum_{i=1}^na_iEX_i(无条件)\\ (3)&若X,Y相互独立,则E(XY)=EXEY\\ (4)&Da=0,D(EX)=0,D(DX)=0\\ (5)&若X,Y相互独立,则D(X\pm Y)=DX+DY\\ (6)&D(aX+b)=a^2DX,E(aX+b)=aEX+b\\ (7)&一般,D(X\pm Y)=DX+DY\pm 2Cov(X,Y)\\ &D(\sum_{i=1}^nX_i)=\sum_{i=1}^nDX_i+2\sum_{1\leq i< j\leq n}Cov(x_i,x_j)\\ [注]&1.0-1分布,EX=p,DX=p-p^2=(1-p)p,X\sim\begin{pmatrix}1&0\\p&1-p\end{pmatrix}\\ &2.X\sim B(n,p),EX=np,DX=np(1-p)\\ &3.X\sim P(\lambda),EX=\lambda,DX=\lambda\\ &4.X\sim Ge(p),EX=\frac1p,DX=\frac{1-p}{p^2}\\ &5.X\sim U[a,b],EX=\frac{a+b}2,DX=\frac{(b-a)^2}{12}\\ &6.X\sim E_X(\lambda),EX=\frac1{\lambda},DX=\frac1{\lambda^2}\\ &7.X\sim N(\mu,\sigma^2),EX=\mu,DX=\sigma^2\\ &8.X\sim \chi^2(n),EX=n,DX=2n\\ \end{aligned}

1.(1)(2)(3)(4)(5)2.(1)(2)3.(1)(2)(3)(4)(5)(6)(7)[注]​期望定义EX{X∼Pi​⟹EX=∑i​xi​Pi​X∼f(x)⟹EX=∫−∞+∞​f(x)dx​X∼pi​,Y=g(X)⟹EY=i∑​g(xi​)pi​X∼f(x),Y=g(X)⟹EY=∫−∞+∞​g(x)f(x)dx(X,Y)∼pij​,Z=g(X,Y)⟹EZ=i∑​j∑​g(xi​,yi​)pij​(X,Y)∼f(x,y),Z=g(X,Y)⟹EZ=∫−∞+∞​∫−∞+∞​g(x,y)f(x,y)dxdy方差定义DX=E[(X−EX)2]定义法:{X∼pi​⟹DX=E[(X−EX)2]=∑i​(xi​−EX)2pi​X∼f(x)⟹DX=E[(X−EX)2]=∫−∞+∞​(x−EX)2f(x)dx​公式法:DX=E[(X−EX)2]=E[X2−2⋅X⋅EX+(EX)2]=E(X2)−2⋅EX⋅EX+(EX)2]DX=E(X2)−(EX)2性质Ea=a,E(EX)=EXE(aX+bY)=aEX+bEY,E(i=1∑n​ai​Xi​)=i=1∑n​ai​EXi​(无条件)若X,Y相互独立,则E(XY)=EXEYDa=0,D(EX)=0,D(DX)=0若X,Y相互独立,则D(X±Y)=DX+DYD(aX+b)=a2DX,E(aX+b)=aEX+b一般,D(X±Y)=DX+DY±2Cov(X,Y)D(i=1∑n​Xi​)=i=1∑n​DXi​+21≤i

协方差与相关系数

C

o

v

(

X

,

Y

)

=

E

[

X

E

X

)

(

Y

E

Y

)

]

,

C

o

v

(

X

,

X

)

=

E

[

(

X

E

X

)

(

X

E

X

)

]

=

E

[

(

X

E

X

)

2

]

=

D

X

1.

{

(

X

,

Y

)

p

i

j

  

  

C

o

v

(

X

,

Y

)

=

i

j

(

x

i

E

X

)

(

u

i

E

Y

)

p

i

j

(

X

,

Y

)

f

(

x

,

y

)

  

  

C

o

v

(

X

,

Y

)

=

+

+

(

x

E

X

)

(

y

E

Y

)

f

(

x

,

y

)

d

x

d

y

2.

C

o

v

(

X

,

Y

)

=

E

(

X

Y

X

E

Y

E

X

Y

+

E

X

E

Y

)

=

E

(

X

Y

)

E

X

E

Y

E

X

E

Y

+

E

X

E

Y

=

E

(

X

Y

)

E

X

E

Y

3.

ρ

X

Y

=

C

o

v

(

X

,

Y

)

D

X

D

Y

{

=

0

  

  

X

,

Y

̸

=

0

  

  

X

,

Y

1.

C

o

v

(

X

,

Y

)

=

C

o

v

(

Y

,

X

)

2.

C

o

v

(

a

X

,

b

Y

)

=

a

b

C

o

v

(

X

,

Y

)

3.

C

o

v

(

X

1

+

X

2

,

Y

)

=

C

o

v

(

X

1

,

Y

)

+

C

o

v

(

X

2

,

Y

)

4.

ρ

X

Y

1

5.

ρ

X

Y

=

1

  

  

P

{

Y

=

a

X

+

b

}

=

1

(

a

>

0

)

,

ρ

X

Y

=

1

  

  

P

{

Y

=

a

X

+

b

}

=

1

(

a

<

0

)

Y

=

a

X

+

b

,

a

>

0

  

  

ρ

X

Y

=

1

,

Y

=

a

X

+

b

,

a

<

0

  

  

ρ

X

Y

=

1

ρ

X

Y

=

0

  

  

{

C

o

v

(

X

,

Y

)

=

0

E

(

X

Y

)

=

E

X

E

Y

D

(

X

+

Y

)

=

D

X

+

D

Y

D

(

X

Y

)

=

D

X

+

D

Y

X

,

Y

  

  

ρ

X

Y

=

0

(

X

,

Y

)

N

(

μ

,

σ

2

)

,

X

,

Y

  

  

X

,

Y

(

ρ

X

Y

=

0

)

\begin{aligned} &Cov(X,Y)=E[X-EX)(Y-EY)],Cov(X,X)=E[(X-EX)(X-EX)]=E[(X-EX)^2]=DX\\ &1.定义法\\ &\begin{cases}(X,Y)\sim p_{ij}\implies Cov(X,Y)=\sum_i\sum_j(x_i-EX)(u_i-EY)p_{ij}\\(X,Y)\sim f(x,y)\implies Cov(X,Y)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x-EX)(y-EY)f(x,y)dxdy\end{cases}\\ &2.公式法\\ &Cov(X,Y)=E(XY-X\cdot EY-EX\cdot Y+EX\cdot EY)\\ &=E(XY)-EX\cdot EY-EX\cdot EY+EX\cdot EY=E(XY)-EXEY\\ &3.\rho_{XY}=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}\begin{cases}=0\iff X,Y不相关\\\not=0\iff X,Y相关\end{cases}\\ 性质&1.Cov(X,Y)=Cov(Y,X)\\ &2.Cov(aX,bY)=abCov(X,Y)\\ &3.Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)\\ &4.\mid \rho_{XY}\mid\leq1\\ &5.\rho_{XY}=1\iff P\{Y=aX+b\}=1(a>0),\rho_{XY}=-1\iff P\{Y=aX+b\}=1(a<0)\\ &考试时:Y=aX+b,a>0\implies \rho_{XY}=1,Y=aX+b,a<0\implies \rho_{XY}=-1\\ 小结&五个充要条件\\ &\rho_{XY}=0\iff\begin{cases}Cov(X,Y)=0\\E(XY)=EX\cdot EY\\D(X+Y)=DX+DY\\D(X-Y)=DX+DY\end{cases}\\ &X,Y独立\implies \rho_{XY}=0\\ &若(X,Y)\sim N(\mu,\sigma^2),则X,Y独立\iff X,Y不相关(\rho_{XY}=0)\\ \end{aligned}

性质小结​Cov(X,Y)=E[X−EX)(Y−EY)],Cov(X,X)=E[(X−EX)(X−EX)]=E[(X−EX)2]=DX1.定义法{(X,Y)∼pij​⟹Cov(X,Y)=∑i​∑j​(xi​−EX)(ui​−EY)pij​(X,Y)∼f(x,y)⟹Cov(X,Y)=∫−∞+∞​∫−∞+∞​(x−EX)(y−EY)f(x,y)dxdy​2.公式法Cov(X,Y)=E(XY−X⋅EY−EX⋅Y+EX⋅EY)=E(XY)−EX⋅EY−EX⋅EY+EX⋅EY=E(XY)−EXEY3.ρXY​=DX

​DY

​Cov(X,Y)​{=0⟺X,Y不相关̸​=0⟺X,Y相关​1.Cov(X,Y)=Cov(Y,X)2.Cov(aX,bY)=abCov(X,Y)3.Cov(X1​+X2​,Y)=Cov(X1​,Y)+Cov(X2​,Y)4.∣ρXY​∣≤15.ρXY​=1⟺P{Y=aX+b}=1(a>0),ρXY​=−1⟺P{Y=aX+b}=1(a<0)考试时:Y=aX+b,a>0⟹ρXY​=1,Y=aX+b,a<0⟹ρXY​=−1五个充要条件ρXY​=0⟺⎩⎪⎪⎪⎨⎪⎪⎪⎧​Cov(X,Y)=0E(XY)=EX⋅EYD(X+Y)=DX+DYD(X−Y)=DX+DY​X,Y独立⟹ρXY​=0若(X,Y)∼N(μ,σ2),则X,Y独立⟺X,Y不相关(ρXY​=0)​

例题

[

1

]

x

1

,

x

2

,

x

3

P

(

λ

)

,

Y

=

1

3

(

x

1

+

x

2

+

x

3

)

,

E

Y

2

=

E

(

x

1

,

x

2

,

x

3

)

=

3

λ

D

(

x

1

,

x

2

,

x

3

)

=

3

λ

E

Y

=

E

(

1

3

(

x

1

,

x

2

,

x

3

)

)

=

1

3

3

λ

=

λ

D

Y

=

D

(

1

3

(

x

1

,

x

2

,

x

3

)

)

=

1

9

3

λ

=

λ

E

Y

2

=

(

E

Y

)

2

+

D

Y

=

λ

2

+

λ

3

[

2

]

X

f

(

x

)

=

{

3

8

x

2

,

0

<

x

<

2

0

,

,

E

(

1

x

2

)

=

E

(

1

x

2

)

=

+

1

x

2

f

(

x

)

d

x

=

0

2

1

x

2

3

8

x

2

d

x

=

3

4

[

3

]

X

B

(

1

,

1

2

)

,

Y

B

(

1

,

1

2

)

,

D

(

X

+

Y

)

=

1

,

ρ

X

Y

=

ρ

X

Y

=

C

o

v

(

X

,

Y

)

D

X

D

Y

1

=

D

(

X

+

Y

)

+

D

X

+

D

Y

+

2

C

o

v

(

X

,

Y

)

  

  

C

o

v

(

X

,

Y

)

=

1

4

ρ

X

Y

=

1

4

1

2

1

2

=

1

[

4

]

(

X

,

Y

)

f

(

x

,

y

)

=

{

1

,

0

y

x

1

0

,

,

C

o

v

(

X

,

Y

)

=

C

o

v

(

X

,

Y

)

=

E

X

Y

E

X

E

Y

E

X

Y

=

D

x

y

f

(

x

,

y

)

d

x

d

y

=

0

E

Y

=

E

1

Y

=

+

+

x

0

y

1

f

(

x

,

y

)

d

x

d

y

=

+

+

y

f

(

x

,

y

)

d

σ

=

D

y

1

d

σ

=

0

C

o

v

(

X

,

Y

)

=

E

X

Y

E

X

E

Y

=

0

\begin{aligned} \ [例1]&\color{maroon}设x_1,x_2,x_3相互独立\sim P(\lambda),令Y=\frac13(x_1+x_2+x_3),则EY^2=\underline{\quad}\\ &E(x_1,x_2,x_3)=3\lambda\quad D(x_1,x_2,x_3)=3\lambda\\ &EY=E(\frac13(x_1,x_2,x_3))=\frac133\lambda=\lambda\\ &DY=D(\frac13(x_1,x_2,x_3))=\frac193\lambda=\lambda\\ &EY^2=(EY)^2+DY=\lambda^2+\frac{\lambda}3\\ [例2]&\color{maroon}X\sim f(x)=\begin{cases}\frac38x^2,0< x< 2\\0,其他\end{cases},则E(\frac1{x^2})=\underline{\quad}\\ &E(\frac1{x^2})=\int_{-\infty}^{+\infty}\frac1{x^2}f(x)dx=\int_0^2\frac1{x^2}\frac38x^2dx=\frac34\\ [例3]&\color{maroon}X\sim B(1,\frac12),Y\sim B(1,\frac12),D(X+Y)=1,则\rho_{XY}=\underline{\quad}\\ &\rho_{XY}=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}\\ &1=D(X+Y)+DX+DY+2Cov(X,Y)\implies Cov(X,Y)=\frac14\\ &\rho_{XY}=\frac{\frac14}{\frac12\cdot\frac12}=1\\ [例4]&\color{maroon}(X,Y)\sim f(x,y)=\begin{cases}1,0\leq \mid y\mid\leq x\leq1\\0,其他\end{cases},则Cov(X,Y)=\underline{\quad}\\ &Cov(X,Y)=EXY-EXEY\\ &其中EXY=\iint_Dx\cdot yf(x,y)dxdy=0\\ &EY=E\cdot1\cdot Y=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}x^0y^1f(x,y)dxdy=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yf(x,y)d\sigma=\iint_Dy\cdot1d\sigma=0\\ &Cov(X,Y)=EXY-EXEY=0 \end{aligned}

[例1][例2][例3][例4]​设x1​,x2​,x3​相互独立∼P(λ),令Y=31​(x1​+x2​+x3​),则EY2=​E(x1​,x2​,x3​)=3λD(x1​,x2​,x3​)=3λEY=E(31​(x1​,x2​,x3​))=31​3λ=λDY=D(31​(x1​,x2​,x3​))=91​3λ=λEY2=(EY)2+DY=λ2+3λ​X∼f(x)={83​x2,0

​DY

​Cov(X,Y)​1=D(X+Y)+DX+DY+2Cov(X,Y)⟹Cov(X,Y)=41​ρXY​=21​⋅21​41​​=1(X,Y)∼f(x,y)={1,0≤∣y∣≤x≤10,其他​,则Cov(X,Y)=​Cov(X,Y)=EXY−EXEY其中EXY=∬D​x⋅yf(x,y)dxdy=0EY=E⋅1⋅Y=∫−∞+∞​∫−∞+∞​x0y1f(x,y)dxdy=∫−∞+∞​∫−∞+∞​yf(x,y)dσ=∬D​y⋅1dσ=0Cov(X,Y)=EXY−EXEY=0​

大数定律与中心极限定理

依概率收敛

{

X

n

}

r

,

v

X

r

,

v

(

a

)

ε

>

0

,

lim

n

P

{

X

n

X

<

ε

}

=

1

lim

n

P

{

X

n

a

<

ε

}

=

1

,

{

X

n

}

X

a

X

n

X

X

a

a

[

1

]

{

X

n

}

,

X

n

f

n

(

x

)

=

n

π

(

1

+

n

2

x

2

)

,

x

R

,

X

n

0

P

{

ε

<

X

n

<

ε

}

=

ε

ε

n

π

(

1

+

n

2

x

2

)

d

x

=

1

π

arctan

x

ε

ε

=

2

π

arctan

n

ε

lim

n

2

π

arctan

n

ε

=

1

\begin{aligned} &设\{X_n\}为一r,v序列,X为一r,v(或a为常数)\\ &若\forall \varepsilon>0,恒有\lim_{n\to\infty}P\{\mid X_n-X\mid<\varepsilon\}=1或\lim_{n\to\infty}P\{\mid X_n-a\mid<\varepsilon\}=1,则称\{X_n\}依概率收敛于X或a\\ &记:X_n\to X 或 X_a\to a\\ [例1]&\color{maroon}设\{X_n\},X_n\sim f_n(x)=\frac{n}{\pi(1+n^2x^2)},x\in R,证X_n\to0\\ &P\{-\varepsilon<X_n<\varepsilon\}=\int_{-\varepsilon}^{\varepsilon}\frac{n}{\pi(1+n^2x^2)}dx=\frac1{\pi}\arctan x\mid^{\varepsilon}_{-\varepsilon}=\frac{2}{\pi}\arctan n\varepsilon\\ &\lim_{n\to\infty}\frac2{\pi}\arctan n\varepsilon=1\\ \end{aligned}

[例1]​设{Xn​}为一r,v序列,X为一r,v(或a为常数)若∀ε>0,恒有n→∞lim​P{∣Xn​−X∣<ε}=1或n→∞lim​P{∣Xn​−a∣<ε}=1,则称{Xn​}依概率收敛于X或a记:Xn​→X或Xa​→a设{Xn​},Xn​∼fn​(x)=π(1+n2x2)n​,x∈R,证Xn​→0P{−ε

三个定律与两个定理

大数定律

1.

{

X

n

}

(

n

=

1

,

2

,

)

0

D

X

k

1

n

i

=

1

n

X

i

1

n

i

=

1

n

E

X

i

=

E

(

1

n

i

=

1

n

X

i

)

k

2.

u

n

n

A

A

p

(

0

<

p

<

1

)

,

u

n

n

p

3.

{

X

n

}

E

X

n

=

μ

1

n

i

=

1

n

X

i

μ

[

]

1

n

i

=

1

n

X

i

E

(

1

n

i

=

1

n

X

i

)

\begin{aligned} 1.&切比雪夫大数定律\\ &设\{X_n\}(n=1,2,\cdots)0是相互独立的随机变量序列,若方差DX_k存在且一致有上界,则\\ &\frac1n\sum_{i=1}^nX_i\to\frac1n\sum_{i=1}^nEX_i=E(\frac1n\sum_{i=1}^nX_i)\\ &一致有上界皆有共同的上界,与k无关\\ 2.&伯努利大数定律\\ &设u_n是n重伯努利试验中事件A发生的次数,在每次试验中A发生的概率为p(0<p < 1),则\frac{u_n}n\to p\\ 3.&辛钦大数定律\\ &设\{X_n\}是独立同分布的随机变量序列,若EX_n=\mu存在,则\frac1n\sum_{i=1}^nX_i\to\mu\\ [注]&在满足一定条件的基础上,所有大数定律都在讲一个结论 \frac1n\sum_{i=1}^nX_i\to E(\frac1n\sum_{i=1}^nX_i)\\ \end{aligned}

1.2.3.[注]​切比雪夫大数定律设{Xn​}(n=1,2,⋯)0是相互独立的随机变量序列,若方差DXk​存在且一致有上界,则n1​i=1∑n​Xi​→n1​i=1∑n​EXi​=E(n1​i=1∑n​Xi​)一致有上界皆有共同的上界,与k无关伯努利大数定律设un​是n重伯努利试验中事件A发生的次数,在每次试验中A发生的概率为p(0

中心极限定理

X

i

i

i

d

F

(

μ

,

σ

2

)

,

μ

=

E

X

i

,

σ

2

=

D

X

i

  

  

i

=

1

n

X

i

n

N

(

n

μ

,

n

σ

2

)

  

  

i

=

1

n

X

i

n

μ

n

σ

n

N

(

0

,

1

)

,

lim

n

P

{

i

=

1

n

X

i

n

μ

n

σ

x

}

=

Φ

(

x

)

[

1

]

X

1

,

X

2

,

,

X

n

i

i

d

P

(

λ

)

,

lim

n

P

{

i

=

1

n

X

i

n

λ

n

λ

x

}

=

{

E

(

i

=

1

n

X

i

)

=

n

λ

D

(

i

=

1

n

X

i

)

=

n

λ

lim

n

P

{

i

=

1

n

X

i

n

λ

n

λ

x

}

=

Φ

(

x

)

\begin{aligned} &不论X_i\sim^{iid}F(\mu,\sigma^2),\mu=EX_i,\sigma^2=DX_i\implies \sum_{i=1}^n X_i\sim^{n\to\infty}N(n\mu,n\sigma^2)\\ &\implies \frac{\sum_{i=1}^n X_i-n\mu}{\sqrt{n}\sigma}\sim^{n\to\infty}N(0,1),即\lim_{n\to\infty}P\left\{\frac{\sum_{i=1}^n X_i-n\mu}{\sqrt{n}\sigma}\leq x\right\} =\Phi(x)\\ [例1]&\color{maroon}假设X_1,X_2,\cdots,X_n\sim^{iid}P(\lambda),则\lim_{n\to\infty}P\{\frac{\sum_{i=1}^n X_i-n\lambda}{\sqrt{n\lambda}}\leq x\}=\underline{\quad}\\ &\begin{cases}E(\sum_{i=1}^n X_i)=n\lambda\\D(\sum_{i=1}^n X_i)=n\lambda\end{cases}\\ &\lim_{n\to\infty}P\{\frac{\sum_{i=1}^n X_i-n\lambda}{\sqrt{n\lambda}}\leq x\}=\Phi(x)\\ \end{aligned}

[例1]​不论Xi​∼iidF(μ,σ2),μ=EXi​,σ2=DXi​⟹i=1∑n​Xi​∼n→∞N(nμ,nσ2)⟹n

​σ∑i=1n​Xi​−nμ​∼n→∞N(0,1),即n→∞lim​P{n

​σ∑i=1n​Xi​−nμ​≤x}=Φ(x)假设X1​,X2​,⋯,Xn​∼iidP(λ),则n→∞lim​P{nλ

​∑i=1n​Xi​−nλ​≤x}=​{E(∑i=1n​Xi​)=nλD(∑i=1n​Xi​)=nλ​n→∞lim​P{nλ

​∑i=1n​Xi​−nλ​≤x}=Φ(x)​

数理统计初步

总体与样本

1.

X

F

(

x

)

2.

X

i

i

i

d

F

(

x

)

\begin{aligned} 1.&总体\quad X\sim F(x)\\ 2.&样本\quad X_i\sim^{iid}F(x)\\ \end{aligned}

1.2.​总体X∼F(x)样本Xi​∼iidF(x)​

点估计

1.

(

1

)

X

=

1

n

i

=

1

n

X

i

(

)

(

2

)

E

X

(

)

(

3

)

E

X

=

X

(

)

2.

=

(

1

)

L

(

θ

)

=

{

i

=

1

n

p

(

x

i

,

θ

)

r

=

1

n

f

(

x

i

,

θ

)

(

2

)

{

d

L

(

θ

)

d

θ

=

0

  

  

θ

^

d

ln

L

(

θ

)

d

θ

=

0

  

  

θ

^

L

(

θ

)

θ

  

  

\begin{aligned} 1.&矩估计\\ (1)&\overline{X}=\frac1n\sum_{i=1}^n X_i(样本估计)\\ (2)&EX(客观存在的均值)\\ (3)&EX=\overline{X}(强行令其相等)\\ 2.&最大似然估计\\ &参数=?时,观测值出现的概率最大\\ (1)&写L(\theta)=\begin{cases}\prod_{i=1}^np(x_i,\theta)\\\prod_{r=1}^nf(x_i,\theta)\end{cases}\\ (2)&\begin{cases}令\frac{dL(\theta)}{d\theta}=0\implies\hat{\theta}\\\frac{d\ln L(\theta)}{d\theta}=0\implies \hat{\theta}\\L(\theta)关于\theta单调\implies 定义\end{cases} \end{aligned}

1.(1)(2)(3)2.(1)(2)​矩估计X=n1​i=1∑n​Xi​(样本估计)EX(客观存在的均值)EX=X(强行令其相等)最大似然估计参数=?时,观测值出现的概率最大写L(θ)={∏i=1n​p(xi​,θ)∏r=1n​f(xi​,θ)​⎩⎪⎨⎪⎧​令dθdL(θ)​=0⟹θ^dθdlnL(θ)​=0⟹θ^L(θ)关于θ单调⟹定义​​

[

1

]

X

(

0

1

2

3

θ

2

2

θ

(

1

θ

)

θ

2

1

2

θ

)

,

0

<

θ

<

1

2

,

X

:

3

,

1

,

3

,

0

,

3

,

1

,

2

,

3.

θ

(

1

)

1.

x

=

1

8

(

3

+

1

+

3

+

0

+

3

+

1

+

2

+

3

)

=

2

2.

E

X

=

0

θ

2

+

1

2

θ

(

1

θ

)

+

2

θ

2

+

3

(

1

2

θ

)

=

3

4

θ

3.

3

4

θ

=

2

  

  

θ

^

=

1

4

(

2

)

L

(

θ

)

=

(

1

2

θ

)

4

[

2

θ

(

1

θ

)

]

2

θ

2

θ

2

=

4

θ

6

(

1

θ

)

2

(

1

2

θ

)

4

  

  

ln

L

(

θ

)

=

ln

4

+

6

ln

θ

+

2

ln

(

1

θ

)

+

4

ln

(

1

2

θ

)

  

  

d

ln

L

(

θ

)

d

θ

=

6

θ

+

2

1

θ

+

4

(

2

)

1

2

θ

=

0

θ

=

7

±

13

12

  

  

θ

^

=

7

13

12

[

2

]

X

F

(

x

,

α

,

β

)

=

{

1

(

α

x

)

β

,

α

x

0

,

α

>

x

,

α

1

,

β

>

1

,

X

1

,

X

2

,

,

X

n

i

i

d

X

,

(

1

)

α

=

1

,

β

(

2

)

α

=

1

,

β

(

3

)

β

=

2

,

α

(

1

)

α

=

1

  

  

X

F

(

x

,

β

)

=

{

1

1

x

β

,

x

1

0

,

x

<

1

x

f

(

x

,

β

)

=

{

β

x

β

+

1

,

x

1

0

,

x

<

1

X

=

1

n

i

=

1

n

X

i

E

X

=

1

+

x

β

x

β

+

1

d

x

=

β

β

1

X

=

β

β

1

  

  

β

^

=

x

x

1

(

2

)

L

(

β

)

=

{

β

n

(

x

1

,

x

2

,

,

x

n

)

β

+

1

,

x

i

1

0

,

  

  

ln

L

(

β

)

=

n

ln

β

(

β

+

1

)

i

=

1

n

ln

x

i

  

  

d

ln

L

(

β

)

d

β

=

n

β

i

=

1

n

ln

x

i

=

0

  

  

β

^

=

n

i

=

1

n

ln

x

i

(

3

)

β

=

2

,

X

F

(

x

,

α

)

=

{

1

α

2

x

2

,

α

x

0

,

α

>

x

  

  

x

f

(

x

,

α

)

=

{

2

α

2

x

3

,

α

x

0

,

α

>

x

L

(

α

)

=

{

2

n

α

2

n

(

x

1

x

2

x

n

)

3

,

x

i

α

0

,

  

  

x

i

α

  

  

ln

L

(

α

)

=

n

ln

2

+

2

n

ln

α

3

i

=

1

n

ln

x

i

  

  

α

ln

2

(

α

)

d

α

=

2

n

α

>

0

  

  

L

(

α

)

α

α

^

=

m

i

n

{

x

1

,

x

2

,

,

x

n

}

\begin{aligned} \ [例1]&\color{maroon}X\sim\begin{pmatrix}0&1&2&3\\\theta^2&2\theta(1-\theta)&\theta^2&1-2\theta\end{pmatrix},0<\theta<\frac12,从X中抽:3,1,3,0,3,1,2,3.\\ &\color{maroon}求\theta得矩估计值与最大似然估计值\\ (1)&1.\overline{x}=\frac18(3+1+3+0+3+1+2+3)=2\\ &2.EX=0\cdot\theta^2+1\cdot2\theta(1-\theta)+2\theta^2+3(1-2\theta)=3-4\theta\\ &3.令3-4\theta=2\implies \hat{\theta}=\frac14\\ (2)&L(\theta)=(1-2\theta)^4[2\theta(1-\theta)]^2\theta^2\theta^2=4\theta^6(1-\theta)^2(1-2\theta)^4\\ &\implies \ln L(\theta)=\ln4+6\ln \theta+2\ln(1-\theta)+4\ln(1-2\theta)\\ &\implies \frac{d\ln L(\theta)}{d\theta}=\frac6\theta+\frac{-2}{1-\theta}+\frac{4(-2)}{1-2\theta}=0\\ &\theta=\frac{7\pm\sqrt{13}}{12}\implies\hat{\theta}=\frac{7-\sqrt{13}}{12}\\ [例2]&\color{maroon}X\sim F(x,\alpha,\beta)=\begin{cases}1-(\frac{\alpha}{x})\beta,\alpha\leq x\\0,\alpha>x\end{cases},\alpha\geq1,\beta>1,X_1,X_2,\cdots,X_n\sim^{iid}X,求\\ &\color{maroon}(1)\alpha=1,\beta的矩估计量\\ &\color{maroon}(2)\alpha=1,\beta的最大似然估计量\\ &\color{maroon}(3)\beta=2,\alpha的最大似然估计量\\ &(1)\alpha=1\implies X\sim F(x,\beta)=\begin{cases}1-\frac1{x^{\beta}},x\geq1\\0,x<1\end{cases}\\ &x\sim f(x,\beta)=\begin{cases}\frac{\beta}{x^{\beta+1}},x\geq1\\0,x<1\end{cases}\\ &\overline{X}=\frac1n\sum_{i=1}^nX_i\\ &EX=\int_1^{+\infty}x\cdot\frac{\beta}{x^{\beta+1}}dx=\frac{\beta}{\beta-1}\\ &\overline{X}=\frac{\beta}{\beta-1}\implies \hat{\beta}=\frac{\overline{x}}{\overline{x}-1}\\ &(2)L(\beta)=\begin{cases}\frac{\beta^n}{(x_1,x_2,\cdots,x_n)^{\beta+1}},x_i\geq1\\0,其他\end{cases}\\ &\implies \ln L(\beta)=n\ln\beta-(\beta+1)\sum_{i=1}^n\ln x_i\\ &\implies \frac{d\ln L(\beta)}{d\beta}=\frac{n}{\beta}-\sum_{i=1}^n\ln x_i=0\implies \hat{\beta}=\frac{n}{\sum_{i=1}^n\ln x_i}\\ &(3)\beta=2,X\sim F(x,\alpha)=\begin{cases}1-\frac{\alpha^2}{x^2},\alpha\leq x\\0,\alpha>x\end{cases}\\ &\implies x\sim f(x,\alpha)=\begin{cases}\frac{2\alpha^2}{x^3},\alpha\leq x\\0,\alpha>x\end{cases}\\ &L(\alpha)=\begin{cases}\frac{2^n\cdot\alpha^{2n}}{(x_1x_2\cdots x_n)^3},x_i\geq\alpha\\0,其他\end{cases}\\ &\implies 一切x_i\geq\alpha\implies \ln L(\alpha)=n\ln2+2n\ln\alpha-3\sum_{i=1}^n\ln x_i\implies \frac{\alpha\ln2(\alpha)}{d\alpha}=\frac{2n}{\alpha}>0\\ &\implies L(\alpha)关于\alpha\\ &\hat{\alpha}=min\{x_1,x_2,\cdots,x_n\}\\ \end{aligned}

[例1](1)(2)[例2]​X∼(0θ2​12θ(1−θ)​2θ2​31−2θ​),0<θ<21​,从X中抽:3,1,3,0,3,1,2,3.求θ得矩估计值与最大似然估计值1.x=81​(3+1+3+0+3+1+2+3)=22.EX=0⋅θ2+1⋅2θ(1−θ)+2θ2+3(1−2θ)=3−4θ3.令3−4θ=2⟹θ^=41​L(θ)=(1−2θ)4[2θ(1−θ)]2θ2θ2=4θ6(1−θ)2(1−2θ)4⟹lnL(θ)=ln4+6lnθ+2ln(1−θ)+4ln(1−2θ)⟹dθdlnL(θ)​=θ6​+1−θ−2​+1−2θ4(−2)​=0θ=127±13

​​⟹θ^=127−13

​​X∼F(x,α,β)={1−(xα​)β,α≤x0,α>x​,α≥1,β>1,X1​,X2​,⋯,Xn​∼iidX,求(1)α=1,β的矩估计量(2)α=1,β的最大似然估计量(3)β=2,α的最大似然估计量(1)α=1⟹X∼F(x,β)={1−xβ1​,x≥10,x<1​x∼f(x,β)={xβ+1β​,x≥10,x<1​X=n1​i=1∑n​Xi​EX=∫1+∞​x⋅xβ+1β​dx=β−1β​X=β−1β​⟹β^​=x−1x​(2)L(β)={(x1​,x2​,⋯,xn​)β+1βn​,xi​≥10,其他​⟹lnL(β)=nlnβ−(β+1)i=1∑n​lnxi​⟹dβdlnL(β)​=βn​−i=1∑n​lnxi​=0⟹β^​=∑i=1n​lnxi​n​(3)β=2,X∼F(x,α)={1−x2α2​,α≤x0,α>x​⟹x∼f(x,α)={x32α2​,α≤x0,α>x​L(α)={(x1​x2​⋯xn​)32n⋅α2n​,xi​≥α0,其他​⟹一切xi​≥α⟹lnL(α)=nln2+2nlnα−3i=1∑n​lnxi​⟹dααln2(α)​=α2n​>0⟹L(α)关于αα^=min{x1​,x2​,⋯,xn​}​

2025-07-15 15:34:10